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Mobile devices and services

Large diffusion of mobile devices, mobile services and 
location-based services



Wireless networks as mobility data collectors

Wireless networks infrastructures are the nerves 
of our territory
besides offering their services, they gather highly 
informative traces about the human mobile 
activities

UbiComp infrastructure will further push this 
phenomenon

Miniaturization, wearability, pervasiveness will 
produce traces of increasing

iti ipositioning accuracy

semantic richness



Which mobility data?y

Location data from mobile phones, i.e. cell p
positions in the GSM/UMTS network.

Location data from GPS-equipped devices –
Galileo in the (near?) future

Next/current generation of Nokia mobile phones have 
on board GPS receiver and can transmit GPS tracks byon-board GPS receiver, and can transmit GPS tracks by 
SMS/MMS

Location data fromLocation data from 
peer-to-peer mobile networks

intelligent transportation environments – VANETintelligent transportation environments VANET 

ad hoc sensor networks, RFIDs (radio-frequency ids)



Mobility, Data Mining and Privacy

Towards an archaeology of the present?gy p

A scenario of great opportunities and risks: 
i i bilit d t i ld f l k l dmining mobility data can yield useful knowledge; 

but, individual privacy is at risk. 

A new multidisciplinary research area is emerging 
at this crossroads, with potential for broad social 
and economic impactand economic impact

F. Giannotti and D. Pedreschi (Eds.) 
Mobility Data Mining and Privacy Springer 2008Mobility, Data Mining and Privacy. Springer, 2008.



A paradigmatic project:
G PKDDGeoPKDD

http://www.geopkdd.euhttp://www.geopkdd.eu
A European FP6 project

Geographic Privacy awareGeographic Privacy-aware 

Knowledge Discovery and Delivery



www.geopkdd.eu

Coordinator: 

KDD LAB Pisa ISTI CNRKDD-LAB Pisa, ISTI-CNR
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The GeoPKDD scenario

From the analysis of the traces of our mobile phones it is 
ibl bil b h i hpossible to reconstruct our mobile behaviour, the way we 

collectively move 

This knowledge may help us improving decision-making inThis knowledge may help us improving decision-making in 
many mobility-related issues:

Planning traffic and public mobility systems in metropolitan areas; g p y y p ;

Planning physical communication networks

Localizing new services in our townsg

Forecasting traffic-related phenomena

Organizing logistics systemsg g g y

Avoid repeating mistakes

Timely detecting changes.
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Timely detecting changes.



Mobility Manager
GSMnetwork

L ti d tLocation data

Mobility models
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Real-time density estimation in urban areasReal time density estimation in urban areas

10
The senseable project: http://senseable.mit.edu/grazrealtime/
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More ambitiously: mobility patterns 

ΔT ∈ [5min, 10min]
ΔT ∈ [25min, 45min]

ΔT ∈ [20min, 35min]

ΔT ∈ [10min, 20min]
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From mobility data to mobility patterns
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From mobility data to mobility patterns
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Mobility data mining and the 
Geographic KnowledgeGeographic Knowledge 
Discovery processDiscovery process



GSM network, WSN, GPS

End userEnd user

Mobility managery g

Mobility Patterns

Mobility 
Data

16
Raw data



GSM Mobility management

Multimedia & 
Geo

Mobility 
Database

Mobility models
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GSM network
End user

Multimedia & 
Geo

Mobility 
Database

Mobility models
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Key questions

How to reconstruct a trajectory from raw logs, how to store j y g
and query trajectory data? 

How to classify trajectories according to means of 
transportation (pedestrian, private vehicle, public 
transportation vehicle, …)?

Which spatio-temporal pattern and /models are useful 
abstractions of mobility data? 

How to compute such patterns and models efficiently?

Privacy protection and anonymity – how to make such 
t f ll i d bl ?concepts formally precise and measurable? 

How to find an optimal trade-off between privacy protection 
and quality of the analysis?

19

and quality of the analysis?



A guided tour on mobility data mining technologies

Trajectory databasesTrajectory databases  

Trajectory warehouses and OLAPj y

Mobility data mining 

Privacy-preserving mobility data mining

Visual analytics for mobility data
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SAcquiring, Storing and 
Querying trajectoriesQuerying trajectories
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Data: typical structure and 
typical size

N;Time;Lat;Long;Height;Course;Speed;PDOP;State;NSat
…
8;22/03/07 08:51:52;50.777132;7.205580; 67.6;345.4;21.817;3.8;1808;4
9;22/03/07 08:51:56;50.777352;7.205435; 68.4;35.6;14.223;3.8;1808;4
10;22/03/07 08:51:59;50.777415;7.205543; 68.3;112.7;25.298;3.8;1808;4
11;22/03/07 08:52:03;50.777317;7.205877; 68.8;119.8;32.447;3.8;1808;4
12;22/03/07 08:52:06;50.777185;7.206202; 68.1;124.1;30.058;3.8;1808;4
13;22/03/07 08:52:09;50.777057;7.206522; 67.9;117.7;34.003;3.8;1808;4
14;22/03/07 08:52:12;50 776925;7 206858; 66 9;117 5;37 151;3 8;1808;414;22/03/07 08:52:12;50.776925;7.206858; 66.9;117.5;37.151;3.8;1808;4
15;22/03/07 08:52:15;50.776813;7.207263; 67.0;99.2;39.188;3.8;1808;4
16;22/03/07 08:52:18;50.776780;7.207745; 68.8;90.6;41.170;3.8;1808;4
17;22/03/07 08:52:21;50.776803;7.208262; 71.1;82.0;35.058;3.8;1808;4
18;22/03/07 08:52:24;50.776832;7.208682; 68.6;117.1;11.371;3.8;1808;418;22/03/07 08:52:24;50.776832;7.208682; 68.6;117.1;11.371;3.8;1808;4
…
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Location data producers:GSM, GPS, 
WiFI

>=< ),,(),...,,,(
111 ininin iiiiiii tyxtyxT

Location data (id, x, y, t)( , , y, )
are generated

Trajectory  stream  manager +
Trajectory reconstruction 

trajectory data 
(obj-id, traj-id, (x, y, t)*) 

are reconstructed

>=< ),,(),...,,,(
111 ininin iiiiiii tyxtyxT

Moving 
Object

are reconstructed

2323

Object 
Database



The trajectory reconstruction problemj y p

From raw location data (obj-id, x, y, t)
 

a sample of a 
user’s movement 
(GPS recordings)(GPS recordings)

 

To trajectory data (obj-id, traj-id, (x, y, t)+)

a sample of 
reconstructed
trajectoriestrajectories
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Reconstructing trajectories
Collected raw data represent time-stamped geographical 
locationslocations 

Raw points arrive in bulk sets
We need a filter that decides if the new series of data is to beWe need a filter that decides if the new series of data is to be 
appended to an existing trajectory or not:

Tolerance distance
Temporal gap
Spatial gap
M i d

y
tt

y

Maximum speed
Maximum noise duration

xx

25
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Reconstructing trajectories: parameters

Tolerance distance
The tolerance of the transmitted time-stamped positions. In other 
words, it is the maximum distance between two consecutive 
time stamped positions of the same object in order for thetime-stamped positions of the same object in order for the 
object to be considered as stationary

t

y y

t

x x
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Reconstructing trajectories: parameters
Tolerance distance

Temporal gap between trajectoriesTemporal gap between trajectories
The maximum allowed time interval between two consecutive 
time-stamped positions of the same trajectory for a single moving p p j y g g
object

t

y y

t

temporal gap

x x
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Reconstructing trajectories: parameters
Tolerance distance

Temporal gap between trajectoriesp g p j

Spatial gap between trajectories
The maximum allowed distance in 2D plane between twoThe maximum allowed distance in 2D plane between two 
consecutive time-stamped positions of the same trajectory

t

y y

t

spatial gap

x x

p g p
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Reconstructing trajectories: parameters
Tolerance distance

Temporal gap between trajectoriesp g p j

Spatial gap between trajectories

Maximum speedp
It is used in order to determine whether a reported time-stamped 
position must be considered as noise and consequently 
di d d f th t t t j tdiscarded from the output trajectory

t

y y

t

y y

x x
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Reconstructing trajectories: parameters

Tolerance distance

Temporal gap between trajectoriesTemporal gap between trajectories

Spatial gap between trajectories

Maximum speedp

Maximum noise duration
The maximum duration of a noisy part of a trajectory AnyThe maximum duration of a noisy part of a trajectory. Any 
sequence of noisy time-stamped positions of the same object will 
result in a new trajectory given that its duration exceeds noisemax

t

y y

t
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Moving Objects Databases
The traditional database technology has been extended into Moving 
Object Databases (MODs) that handle modeling, indexing and query 
processing issues for trajectories 

Spatial and temporal dimensions are considered as first-class citizens.

Both past and current (as well as anticipated future) positions of moving 
objects are of interest.

SECONDO: Ralf Hartmut Guting, et. al. SECONDO: An Extensible S CO O a a u Gu g, e a S CO O e s b e
DBMS Platform for Research Prototyping and Teaching. In Proceeding 
of the International Conference on Data Engineering, ICDE, pages 
1115{1116, Tokyo, Japan, April 2005.

PLACE: Mohamed F. Mokbel, et al. PLACE: A Query Processor for 
Handling Real-time Spatio-temporal Data Streams (Demo). In 
Proceeding of the International Conference on Very Large Data 
Bases VLDB pages 1377{1380 Toronto Canada August 2004Bases, VLDB, pages 1377{1380, Toronto, Canada, August 2004.

DOMINO: Ouri Wolfson, et al.. Management of Dynamic Location 
Information in DOMINO (Demo). In Proceeding of the International 
Conference on Extending Database Technology, EDBT, pages 
769{771 P C h R bli M h 2002
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769{771, Prague, Czech Republic, March 2002.
Location-aware Query Processing and Optimization: A Tutorial by
Mohamed F. Mokbel, MDM07



Querying the Moving Object Database

Traditional 
spatial search

 
2 3

4 
Q4Q6spatial search

Range / 
distance-based / 
NN queries

t y 

1 2

Q3

3

Q5

Q4 

t6 

Q6

Trajectory-sub-
sequence search

Spatial / temporal 

Q1 

t

t4

t2 

t3 

p p
intersections of 
trajectories

Topological / 
directional search

Q2 

t1

directional search
enter (cross, leave, bypass, etc.) an area
located west (south, etc.) of a (static) area 

x

located left of (right of, in front of, etc.) a (moving) object

32

The GeoPKDD warehouse system



Location-based Database Servers

Layered Approach Built-in ApproachLayered Approach Built in Approach

GIS Interface

Spatio-temporal

GIS DBMS

DBMS
ST Query 

ProcessingDBMS

ST-Index

g
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HERMES: A Database Engine for Moving Objects

Built on top of ORACLE 10 

Data model: absolute vs. relative location coordinates
Current location as a function in time over the starting location

linear and arc movement functionslinear and arc movement functions

Trajectory management
Insert/Update/Delete a moving object or a segment of its trajectory

Functions over trajectories or sets of trajectories

Data management
Supported indices: R-tree (for stationary data)

Development of a specialized index (TB-tree)

Nikos Pelekis, Yannis Theodoridis: Boosting location-based 
services with a moving object database engine. MobiDE 2006: 3-
10 
Nikos Pelekis, Yannis Theodoridis, Spyros Vosinakis, Themis 
Panayiotopoulos: Hermes - A Framework for Location-Based Data 

3434
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Management. EDBT 2006: 1130-1134



Hermes: trajectory data type

Primitive definition:
Unit_Function = d
〈 xi:double, yi:double, xe:double, ye:double, xc:double, yc:double, 
v:double, a:double, flag:TypeOfFunction 〉 , wherev:double, a:double, flag:TypeOfFunction 〉 , where

TypeOfFunction={ CONST, PLNML_1, ARC_<1..8> }

Unit_Moving_Point = d 〈 p: Period〈SEC〉, m: Unit_Function〉

Moving_Point = d { tab: set〈Unit_Moving_Point〉 | …constraints…}
xx' t ε [t1, t2) -> Linear movement

t ε [t2, t3) -> Arc movement

t ε [t3, t4) -> Const movement
φ

yy'

tt'

t ε [t4, t5) -> Linear movement

3535
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TB-Tree support in Hermes MOD engine

TB-Tree Index
Maintains the ‘trajectory’ concept

Each node consists of segments 
of a single trajectoryof a single trajectory 

Nodes are linked together in a chain
Effective for trajectory-oriented queries

t7

t11Implemented in Hermes using 
Oracle’s indexing extensibility

t3

t1 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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HERMES includes

Spatial entities: 

Road Network Data (Nodes, Links) 

Landmarks (ID, geometry, address, area, type)

Regions (ID, name, geometry)
“Moving” entities:Moving  entities: 

Vehicles (object_id, traj_id, route)

3737



Query Operations

Entities involved in a queryq y
Reference Object: the type (trajectory or spatial entity) of 
the object based on which query answers are retrieved

Data Object: the type (trajectory or spatial entity) of the 
objects participating in the posed query answer

Query classification
Moving Point – Moving Point

Moving Point – Static Spatial

Static Spatial – Moving Point

3838



Moving Point – Moving Point

Nearest Neighbor queries
Given a trajectory T, find 
the   K nearest (during T’s 
lifetime) parts of other 
trajectories

Similarity queries
Spatial similarity

Spatiotemporal similarity

Speed-pattern similarity

Direction-pattern similarity

3939



Moving Point – Static Spatial

Point query
Find the regions that intersect  with 
a given trajectory  

Topological query
Find the regions that contain, 
overlap by intersect overlap byoverlap by intersect, overlap by 
disjoint etc with a given trajectory 

Nearest-Neighbor query
Find the K nearest landmarks 
(POIs) to a given trajectory

4040



Static Spatial– Moving Point (1/2)

Range query
Find trajectory parts fully 

t i d i icontained in a given  
spatiotemporal window

Nearest Neighbor query
Find the K nearest trajectory j y
parts to a POI, within a given 
time period

4141



Static Spatial– Moving Point (2/2)

Topological query
Find the trajectories that 
enter/leave an area within 
a given time period

Directional queryDirectional query
Find trajectories whose 
location is east, west, 

th th l ft i htnorth, south, left, right, 
front, behind of a POI

4242
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Trajectory DatawarehouseTrajectory Datawarehouse



A trajectory warehouse system architecture

data producers (mobile)data analyst 
(desktop)

location data (obj-id x y t)

b i

location data (obj-id, x, y, t)
(not trajectories) 
are generated

Trajectory warehouse custom s/w

web service

trajectory 
data cube

moving 
object 

database

trajectory 
stream 

manager

trajectory data 
GIS

Geographical context trajectory data 
(obj-id, traj-id, (x, y, t)+) 

are reconstructed

Geographical context 
is considered geo-

layers
aggregated trajectory data 

are computed 
(ETL procedure)
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Data warehouses (DW)

Widely investigated for conventional, non-spatial data.

Some research on spatial DW, pioneering work by Han
et al. in 1998.

Spatial and non spatial dimensions and measuresSpatial and non-spatial dimensions and measures.

OLAP operations in a spatial data cube.

Recent research direction: developing spatio temporalRecent research direction: developing spatio-temporal
DW and supporting spatio-temporal OLAP operations in
order to extract summarized spatio-temporal
informationinformation.

Useful for: traffic supervision systems, transportation
and supply chain managements, mobile e-and supply chain managements, mobile e
commerce.

Focus on methods for an efficient implementation of
ti t l t i

46

spatio-temporal aggregate queries.



Trajectory data warehousing

Trajectory data warehousing should
extract aggregate information from MOD

support a variety of dimensions (temporal, spatial, thematic, …) and 
measures (about space, time and their derivatives)

Storing measures associated with facts, concerning the set of trajs
crossing the cell
⇒ aggregate information in base  cells 

Challenges 
high volume and complex nature of data; special query processing 
requirements

Results so far: 
design of a trajectory-oriented data cube

extensions of traditional aggregation techniques to produce summary 
information for OLAP analysis

47



Basic definitions & schemas

Trajectory >=< ),,(),...,,,(
111 ininin iiiiiii tyxtyxT

Moving Object Database
OBJECTS (object-id: identifier, description: text, gender: {M | F}, 
birth-date: date, profession: text, device-type: text)

RAW LOCATIONS (object-id: identifier, timestamp: datetime,

D = {T1, T2, …, TN} 
RAW_LOCATIONS (object id: identifier, timestamp: datetime, 
eastings-x: numeric, northings-y: numeric, altitude-z: numeric)

MOD_TRAJECTORIES (trajectory-id: identifier, object-id: 
identifier, trajectory: 3D geometry)

Trajectory Data Warehouse
Di i S ti lDimensions: Spatial, 
Temporal, Object Profile

Measures: countMeasures: count 
(trajectories), count (users), 
avg (distance traveled), avg 
(travel duration) avg (speed)

48

(travel duration), avg (speed), 
avg (abs (acceler) )
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ETL processing: loading

Loading data into the dimension tables 
straightforwardstraightforward

Loading data into the fact table complex
Fill in the measures with the appropriate numeric values

In order to calculate the measures, we have to extract 
th ti f th t j t i th t fit i t th b llthe portions of the trajectories that fit into the base cells 
of the cube

We propose two alternative yWe propose two alternative 
solutions to this problem: 

cell orientedcell-oriented

trajectory-oriented

4949
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ETL processing: algorithms

Cell-oriented approach (COA)
S h f th ti f t j t i ySearch for the portions of trajectories 

that they reside inside a 
spatiotemporal cell 

y

Perform a spatiotemporal 
range query that returns the 
portions of trajectories that 

ti f th t i tsatisfy the range constraints
This is efficiently supported by 
the TB-tree [VLDB’00]

x
COUNT TRAJECTORIES = 2

Decompose the trajectory portions 
with respect to the user profiles they 
belong to 

_  2
COUNT_USERS = 2
…

g
Compute measures for this cell
Repeat for the next cells

5050



ETL processing: algorithms
Trajectory-oriented approach (TOA)

Discover the spatiotemporal cells
y

Discover the spatiotemporal cells 
where each trajectory resides in 

In order to avoid checking all 
cells use the trajectory MBRcells, use  the trajectory MBR 

Identify the cells that overlap with the 
MBR and contain portions of the 
t j t

x

COUNT TRAJECTORIES = 1

trajectory
Compute measures for each cell

… COUNT TRAJECTORIES = 2_  1
COUNT_USERS = 1
…

…
Repeat for the next trajectories

…

_  2
COUNT_USERS = 2
…
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ETL processing: measures
Measure Formula
COUNT count all distinct trajectory ids that pass through base cell (bc)COUNT_

TRAJECTORIES 
count all distinct trajectory ids that pass through base cell (bc)

COUNT_USERS count all the distinct object ids that pass through bc

AVG_DISTANCE_
TRAVELED )(_

)(_)(__
bcESTRAJECTORICOUNT

bcDISTANCESUMbcTRAVELEDDISTANCEAVG =

  ∑
∈

=
bcTP

i
i

TPlenbcDISTANCESUM )()(_

AVG_TRAVEL_
DURATION 

∈bcTPi

 
)(_

)(_)(__
bcESTRAJECTORICOUNT

bcDURATIONSUMbcDURATIONTRAVELAVG =

∑= iTPlifespanbcDURATIONSUM )()(_

AVG_SPEED

∈bcTPi

 
)(_

)(_)(_
bcESTRAJECTORICOUNT

bcSPEEDSUMbcSPEEDAVG =

∑ TPlen )(

AVG_ABS_
ACCELER

∑
∈

=
bcTP i

i

i
TPlifespan

TPlenbcSPEEDSUM
)(

)()(_

 
)(

)(__)(__
bcESTRAJECTORICOUNT

bcACCELERABSSUMbcACCELERABSAVG =
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ACCELER )(_

 
∑
∈

−
=

bcTP i

iinitifin

i
TPlifespan

TPspeedTPspeed
bcACCELERABSSUM

)(

)()(
)(__



Aggregating measures in the cube
R1 R4 R5 At the lowest hierarchy level:R

R2

count of trajectories in R4 = 3

count of trajectories in R5 = 2
R2

R6

count of trajectories in R6 = 1

Roll up in R

R
count of trajectories in R = 6 

(according to traditional roll up)R3
(according to traditional roll up)

Correct answer: 3 (!!) due to the fact 
that the contents (trajectories) of the 

titi l i
How to compute the correct answer?

partitions are overlapping•A naïve solution is to query back the raw data.
•Can we do something better?

53

Future steps, open issues



The distinct count problem: definition

During the ETL process, measures can be computed in an 
accurate way by executing MOD queriesaccurate way by executing MOD queries 

Once the fact table has been fed, aggregate-only information is 
stored inside the TDW (no trajectory / user ids)stored inside the TDW (no trajectory / user ids)

When rolling up, COUNT_USERS, COUNT_TRAJECTORIES and, 
hence all other measures defined over COUNT TRAJECTORIEShence, all other measures defined over COUNT_TRAJECTORIES
are subject to the distinct count problem [ICDE’04]: 

if an object remains in the query regionyif an object remains in the query region 
for several timestamps during the query 
interval, instead of counting this object g j
once, it is counted multiple times in the 
result

54
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The distinct count problem: solution 
(1/3)

We store in the base cells (C(x,y),t,p) a tuple of auxiliary ( y) p
measures that help us correct the errors due to the duplicates 
when rolling-up:

C T j b f di ti t t j t i f filC(x,y),t,p.Traj : number of distinct trajectories of profile p
intersecting the cell

C cross x: number of distinct trajectories of profile pC(x,y),t,p.cross-x: number of  distinct trajectories of profile p
crossing the spatial border between C(x-1,y),t,p and C(x,y),t,p

C(x y) t p.cross-y: number of  distinct trajectories of  profile p(x,y),t,p y j p p
crossing the spatial border between C(x,y-1),t,p and C(x,y),t,p

C(x,y),t,p.cross-t: number of  distinct trajectories of profile p crossing 
the temporal border between C(x,y),t-1,p and C(x,y),t,p 

T
Cell C(x,y),t,p

5555X
Y



The distinct count problem: solution 
(2/3)

Let C(x’ y’) t’ p’ be a cell consisting of the union of two (x ,y ),t ,p  g
adjacent cells  (i.e. C(x,y),t.p ∪C(x+1,y),t,p )

In order to compute the number of distinct 
trajectories: 

C(x’,y’),t’,p’.Traj = C(x,y),t,p.Traj + C(x+1,y),t,p.Traj – C(x+1,y),t,p ( ,y ), ,p ( ,y), ,p ( ,y), ,p ( ,y), ,p
.cross-x

application of the well-known Inclusion/Exclusion 
i i l f t ⎜A B⎟ ⎜A⎜ ⎜B⎜ ⎜A B⎟principle for sets: ⎜A∪B⎟ = ⎜A⎜ + ⎜B⎜ − ⎜A∩B⎟

BUT in some cases it holds that 
C cross-x ≠ ⎜A∩B⎟C(x+1,y),t,p.cross-x ≠ ⎜A∩B⎟

Example: fast and agile trajectories

5656



The distinct count problem: solution 
(3/3)

Compute the number of distinct trajectories:

Cx,y,t,p.Traj 
= 
1

Cx+1,y,t,p.Traj 
= 
1

Cx+1,y,t,p.cross-x 
= 
1

Cx+1,y,t,p.cross-x 
= 
0

Cx,y,t,p Cx+1,y,t,p Cx,y,t,p Cx+1,y,t,p

Cx,y+1,t,p Cx+1,y+1,t,p Cx,y+1,t,p Cx+1,y+1,t,p

(a) (b)

Correct! Not Correct!
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Traffic density patterns (spatio-temporal aggregation)
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Low-speed movement (counts, 3h intervals)

2 075M ti 17 000 i li 200 000 t i tt i2 075M ti 17 000 i li 200 000 t i tt i2.075M punti, 17.000 veicoli, 200.000 traiettorie2.075M punti, 17.000 veicoli, 200.000 traiettorie
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Real-time density estimation in urban areasReal time density estimation in urban areas

60
The senseable project: http://senseable.mit.edu/grazrealtime/
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Mobility data miningMobility data mining

Trajectory Pattern MiningTrajectory Pattern Mining

Trajectory Classificationj y

Trajectory Clustering



Q: What is a trajectory pattern?Q: What is a trajectory pattern?

63



A: A spatio-temporal sequential patternp p q p

A sequence of visited regions, frequently visited in q g , q y
the specified order with similar transition times

64
Giannotti, Nanni, Pedreschi, Pinelli. 
Trajectory pattern mining. In Proc. ACM SIGKDD 2007



T-Pattern discoveryy

1 Fi d R i f I1- Find Regions of Interest

2- Find similar Trajectory in space and time

65

3- Extract patterns:



T-Pattern: Extraction Process

T-PATTERNS

Trajectories 
Dataset

66

Regions of 
Interest



T-Patterns for trajectories

A T j t P tt (T tt ) i i ( )

j

A Trajectory Pattern (T-pattern) is a pair (s, α):
s = <(x0,y0),..., (xk,yk)> is a sequence of k+1 locations
α = <α α > are the transition times (annotations)α = <α1,..., αk>  are the transition times (annotations)

also written as:

A T-pattern Tp occurs in a trajectory if it contains a sub-
sequence S such that:sequence S such that:

each (xi,yi) in Tp matches a point (xi’,yi’) in S, and
the transition times in Tp are similar to those in Sp
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Continuity issues (space & time)y ( p & )

The same exact spatial location (x,y) usually never 
occurs twice

The same exact transition times usually do not occurThe same exact transition times usually do not occur 
twice

Solution: allow approximation
a notion of spatial neighborhood

a notion of temporal tolerance
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T-Pattern: approximate occurrencea e app o a e occu e ce

Two points match if one falls within a spatial 
neighborhood N() of the other

Two transition times match if their temporal 
difference is ≤ τ

Example:
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T-Pattern: approximate occurrencea e app o a e occu e ce

Two points match if one falls within a spatial 
neighborhood N() of the other

Two transition times match if their temporal 
difference is ≤ τ

Example:
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T-Pattern: approximate occurrencea e app o a e occu e ce

Two points match if one falls within a spatial 
neighborhood N() of the other

Two transition times match if their temporal 
difference is ≤ τ

Example:
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Computing general T-Patternsp g g

T-pattern mining can be mapped to a density 
estimation problem over R3n-1

2 dimensions for each (x,y) in the pattern (2n) 
1 dimension for each transition (n-1) 

Density computed by
mapping each sub-sequence of n points of each input 
trajectory to R3n-1trajectory to R3n 1

drawing an influence area for each point (composition of N()
and τ))

Too computationally expensive, heuristics needed!!!
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Approach 1: predefined regionsApproach 1: predefined regions
Fi t f d fi d i f i t tFix a set of pre-defined regions of interest

ParkingParking

B
us

 s
ta

tio
n

B
us

 s
ta

tio
n

ParkingParking

MallMall

Map each (x,y) of the trajectory to its region

M llt tiB min20

timetime

S

7373

MallstationBus ⎯⎯ →⎯ .min20Sample pattern:



Approach 2: static discoveredApproach 2: static discovered 
regionsg

Detect significant regions thru spatial clustering

around(x1,y1)around(x1,y1)

around(xaround(x11,y,y11))

Map each (x,y) of the trajectory to its region

)()( min20 dd

timetime

S

7474

),(),( 22
.min20

11 yxaroundyxaround ⎯⎯ →⎯Sample pattern:



Approach 3: dynamic discoveredApproach 3: dynamic discovered 
regions

Dynamic discovering of dense regions
Regions are located at each step of the pattern generation

g
g p p g

Sample pattern: ByxAyx ∈⎯⎯ →⎯∈ ),(),( .min20
Sample pattern: yy )()(

yy (x(x22,y,y22)) 1.Considering all 

(x4,y4)(x4,y4)

ΔΔt = t = 20 min.20 min.AA

==

g
trajectories, A is a 
cluster/dense region
2.Considering only 

(x1,y1)(x1,y1)
(x(x33,y,y33))

BB

g y
trajectories that visit A, 
B is a cluster
3.”20 mins” is a typical 

7575
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Static NeighborhoodsStatic Neighborhoods
Regions-of-Interest (RoI) 

Given a set of Regions of Interest R, define 
the neighborhood of (x y) as:the neighborhood of (x,y) as:

NR(x,y)  = A if  A∈R &  (x,y)∈A
∅ otherwise

Neighbors belong to the same regionNeighbors belong to the same region

Points in no region have no neighbors
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From ST sequences to sequencesFrom ST-sequences to sequences

With static neighborhoods NR() ST-sequences 
replaced by corresponding seqs of regions:
A T-pattern (s,α) is contained in a ST-sequence S=<(x1,y1,t1), ..., 

(xn,yn,tn)> the TAS (s’,α) is contained in sequence S’

s’ (resp. S’) is obtained by mapping each element (x,y) of s
(resp. S) to NR(x,y) 
TAS = Temporally annotated seq of labelsTAS = Temporally annotated seq. of labels

E.g.:
Fosca Giannotti, Mirco Nanni, Dino Pedreschi. Efficient 
Mining of Temporally Annotated Sequences. SIAM-DM 
2006.
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Translating ST-sequencesTranslating ST-sequences
Example

R1R1

R3

Y

(x5,y5,t5) 

S=<(x1 y1 t1) (x5 y5 t5)>

R2
R3

(x4,y4,t4) 

S=<(x1,y1,t1), ..., (x5,y5,t5)>

R4
(x2,y2,t2) 

(x3,y3,t3) 

<(R4,t1), (R3,t3), (R3,t4), (R1,t5)>
X

(x1,y1,t1)
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Static Neighborhoods: issueStatic Neighborhoods: issue

What if RoI are not known a priori?

S l ti d fi h i ti f t ti R I t tiSolution: define heuristics for automatic RoI extraction 
from data

Wide range of heuristics:Wide range of heuristics:
Geography-based (e.g., crossroads) 

Usage-based (e.g., popular places)

Mixed (e.g., popular squares) 
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Static NeighborhoodsStatic Neighborhoods
A usage-based heuristic

1 Impose a regular grid over space1. Impose a regular grid over space

2. Find dense cells (i.e., touched by many trajs.) 

80

3. Coalesce cells into rectangles of bounded size



Multi step refinement RoIMulti-step refinement RoI

Static RoIStatic RoI
Cells approximate single points, regions group points 
th t lik l t f i il ttthat are likely to form similar patterns

Yet, they should regard only trajectories that support 
the discovered pattern, not all database

Towards general T-patternsTowards general T patterns
Check & update dense cells and regions of each 
pattern against the trajectories that support itpattern against the trajectories that support it

Approximation: Perform the update as step-wise 
refinement as patterns grow

81

refinement as patterns grow 



Step wise dynamic RoIStep-wise dynamic RoI
Example

Start computing regions 
as basic RoI approachas basic RoI approach

Regions describe 
interesting places of 
everybody
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Step-wise dynamic RoIStep-wise dynamic RoI
Example

Focusing on A, we 
consider only the subsetconsider only the subset 
of relevant trajectories

Regions can change 
(usually shrink/split) 

They are interesting 
only for who passes thru 

83
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Step wise dynamic RoIStep-wise dynamic RoI
Example

Focusing on A->F (with 
some transition time)some transition time), 
we further restrict the 
set of trajectoriesset of trajectories 
involved

Th i t dThe process is repeated 
as far as possible
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Sample T-patternsSample T-patterns
(Data source: trucks in Athens – 273 trajectories) 
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Related works on T-patterns

H. Cao, N. Mamoulis, and D. W. Cheung. Mining frequent spatio-Cao, a ou s, a d C eu g g eque t spat o
temporal sequential patterns. ICDM’05.

patterns are in the form of sequences of trajectory segments, and their 
approximate instances are searched in the dataapproximate instances are searched in the data

P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving 
clusters in spatio-temporal data. SSTD’05.

patterns are in the form of moving regions within time intervals, such as 
spatio-temporal cylinders or tubes. Instances are trajectory segments 
fully contained in the moving regionsy g g

N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. 
Cheung. Mining, indexing, and querying historical spatiotemporal 
data KDD’04data. KDD’04.

maximal periodic patterns, treating discrete time and continuous spatial 
locations that are discretized dynamically through density-based 

86

clustering



Related works on T-patterns

J Y d M H T jP tt Mi i ti l tt fJ. Yang and M. Hu. TrajPattern: Mining sequential patterns from 
imprecise trajectories of mobile objects. EDBT’06.

patterns in the form of sequences of locations are mined, and also the p q ,
uncertainty of object locations is considered from a probabilistic 
viewpoint

H Cao N Mamoulis and D W Cheung Discovery of collocationH. Cao, N.Mamoulis, and D.W. Cheung. Discovery of collocation 
episodes in spatiotemporal data.ICDM’06.

input objects are associated to an object type (e.g., deers, pumas, etc.), 
d th tt d ibi th i it (i ll ti ) b tand then patterns describing the proximity (i.e., collocation) between 

object types are mined
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Ongoing workOngoing work

Application-oriented assessments on large, real datasets 
show that T-patterns are many and difficult to evaluate

A starting point for further model construction, rather than a 
final product

Simplification of output transition timesSimplification of output transition times
The most complex info for end users

Study relations with
Geographic background knowledge, such as points of 
i t t d d t kinterests and road network

Privacy issues – are T-patterns safe? Can we use T-patterns 
to protect (anonymize) original data?

88

to protect (anonymize) original data?

Reasoning on trajectories and patterns



Mobility data miningMobility data mining

Trajectory Pattern MiningTrajectory Pattern Mining

Trajectory Classification j y

Trajectory Clustering



L ti di ti b dLocation prediction based 
on T-patternsp

F. Pinelli, A. Monreale, R. Trasarti, F. Giannotti

Location prediction within the mobility data 
analysis environment Daedalusanalysis environment Daedalus

Workshop on Intelligent Transportation 
Systems @MDM 2008Systems @MDM 2008



Location Prediction: IdeaLocation Prediction: Idea

T-Pattern extracts a set of local patterns from a global set of dataT-Pattern extracts a set of local patterns from a global set of data.

Can we use these patterns to build a global model to predict the 
next location?

Local patterns Global model

91

Local patterns
(T-pattern) (Ptree)



Location Prediction: Building Ptree
88 T‐Pattern results:

Location Prediction: Building Ptree

55
66

44

4 [10, 15] 5 [60, 90] 8  s.10
4 [10, 15] 5 [2, 7] 6  s. 8
1 [100 120] 2 [90 110] 3 s 7

11

22
33

44 1 [100, 120] 2 [90, 110] 3  s. 7
1 [100, 120] 2 [14, 19] 3  s.15

1 s=151 s=15

[100, 120]

4 s=104 s=10
[10, 15]

2 s=152 s=15

[14 19][90 110]

5 s=105 s=10

[60 90] [2 7]
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8 s=108 s=10 6 s=86 s=8 3 s=73 s=7 3 s=153 s=15

[14, 19][90, 110][60, 90] [2, 7]



Location PredictionLocation Prediction

The idea is to find the pattern that best matches a given trajectory p g j y
computing the puntual score for each admissible node in the Ptree and 
then the score of a path on it.

22

11

33
d2

11
Space

d1

TimepScore = supp(1)/d1

pScore = supp(2)/d2
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Experiments

94



Works on location prediction

B. Xu and O. Wolfson. Time-series prediction with 
applications to traffic and moving objects databases. 
MobiDE, 2003.

G Y D K t O Ul Y M l l A d tG. Yavas, D. Katsaros, O. Ulusoy, Y. Manolopoulos. A data 
mining approach for location prediction in mobile 
environments. Data Knowl. Eng., 54(2):121–146, 2005.

M. Morzy. Prediction of moving object location based on 
frequent trajectories. ISCIS 2006, LNCS 4263 Springer.

M. Morzy. Mining frequent trajectories of moving objects for 
location prediction. MLDM 2007, LNCS 4571 Springer.

H J Q Li H T Sh d X Zh A h b idH. Jeung, Q. Liu, H. T. Shen, and X. Zhou. A hybrid 
prediction model for moving objects. ICDE, 2008.
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Semantic annotation of mobility raw data

many applications in the mobility domain require a 
semantic interpretation of movement information

traffic management, site evaluation, LBS, 
advertisement

physical trajectories can be retrieved by GPS loggers

obtaining semantic trajectories is a challengeg j g
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Semantic Annotation of GPS Trajectories

Physical Trajectory: Semantic Trajectory:Physical Trajectory:

e.g. GPS recording over 
some period of time

Semantic Trajectory:

places where a person stayed
means of transportation
combination of above elements for

way to work

combination of above elements for 
higher-level description

bus stop

way to work

bus stop

p

bus stop
home work

bus stopbus stop
bus stop

97

on foot

by bus



Semantic Annotation of GPS TrajectoriesSemantic Annotation of GPS Trajectories

Barış Güç, Michael May, Yücel Saygın, Christine Körner

AGILE Conference, 2008



Related Work

many studies show inconsistencies between GPS trajectories andmany studies show inconsistencies between GPS trajectories and 
travel diaries (Stopher 2007, Zmund 2003)

automatic annotation of trajectories using background information and 
land uses (Axhausen 2003 Wolf et al 2001 Wolf 2000) is limited inland uses (Axhausen 2003, Wolf et al. 2001, Wolf 2000) is limited in 
several aspects

focus on vehicular movement

distinguish only few trip purposes

ambiguous results possible due to land use data

the purpose of a trip can be irrelevant to its destination

Axhausen, K.W., S. Schönfelder, J. Wolf, M. Oliveira and U. Samaga: 80 weeks of GPS-traces: Approaches to , , , , g pp
enriching the trip information, Arbeitsbericht Verkehrs- und Raumplanung, 2003.
Wolf, J., Guensler R. and Bachman, W.: Elimination of the Travel Diary: An Experiment to Derive Trip Purpose 
from GPS Travel Data, Transportation Research Record, 1768, 125-134, 2001
Wolf, J.: Using GPS data loggers to replace travel diaries in the collection of travel data, Dissertation, 2000
Zmud J and Wolf J : Identifying the Correlations of Trip Misreporting Results fro the California Statewide
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Zmud, J. and Wolf, J.: Identifying the Correlations of Trip Misreporting – Results fro the California Statewide 
Household Travel Survey GPS Study. In: Proc. of the 10th International Conference on Travel Behaviour
Research, 2003.



Aim

ensure the accurate annotation of a trajectory by the user

present the physical trajectory in geographic and temporal 
context

assist the user during the annotation process

ensure consistency among users

a tool to visualize, annotate and store GPS trajectory data
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Annotation Model

annotation model follows the concept of episodes (Mountain 2001)p p ( )

semantic episodes are homogeneous sections of a trajectory with respect to

purpose of the movement (e.g. working, shopping, transition)

mode of transportation (e.g. by car, bus, foot)

“Trips” for aggregating episodes on a higher semantic level

e g : all episodes on the way to work can be grouped into a common tripe.g.: all episodes on the way to work can be grouped into a common trip 

101
Mountain, D. M. and Raper J. F.: Modelling Human Spatio-Temporal Behaviour: A Challenge for 
Location-based Services. In: Proc. of the 6

th
International Conference on GeoComputation, 2001.



Annotation Workflow

Download data from GPS device

Visualize trajectories using Google Maps

Annotate on a “timeline”

St t ti d GPS d t t l d t bStore annotation and GPS raw data on central database
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Interface Functionality

Annotation

Annotate on the timeline by partitioning trajectory into episodes

Interface ensures consistency between users

fl iblflexible

“Placemarks”

Users mark favorite places on the map

Display visited placemarks on the timeline
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Challenges

E d hExtend approach to 

automatic extraction of frequently visited places

automatically derive the means of transportation 

provide the user with a possible annotation

Use data with data mining and machine learning techniques 
for automatic annotation/classification
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The Challenge of Trajectory ClassificationThe Challenge of Trajectory Classification

Build a predictive model that associates a trajectoryBuild a predictive model that associates a trajectory 
with a class from a given set

E.g.: { car, motorbike, truck }E.g.: { car, motorbike, truck }

{ dangerous, non-dangerous }

The model relies only on the movement described by 
the trajectoryj y

Possibly with background knowledge about context
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Features for trajectory classificationFeatures for trajectory classification

Key phase in classification: represent trajectories through an 
alphabet of behaviours
1. extract significant (frequent, discriminative, etc.) patterns 

emerging from data

2. describe each trajectory in terms of which patterns it follows

3. extract rules correlating descriptive patterns and target label

From local patterns to global (predictive) models
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Works on trajectory classification

Scarce results so far, e.g.g

Fraile, R. and Maybank, S. J., “Vehicle Trajectory 
Approximation and Classification,” In Proc. 9th British 
Machine Vision Conf., Southampton, UK, pp. 832–
840, Sept. 1998.
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Mobility data miningMobility data mining

Trajectory Pattern MiningTrajectory Pattern Mining

Trajectory Classification j y
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Works on Trajectory Clustering

Gaffney, S. and Smyth, P., Trajectory Clustering with Mixtures of 
Regression Models, ACM SIGKDD 1999.

Gaffney, S., Robertson, A., Smyth, P., Camargo, S., and Ghil, M.,  
P b bili ti Cl t i f E t t i l C l U iProbabilistic Clustering of Extratropical Cyclones Using 
Regression Mixture Models, Tech. Rep. UCI-ICS 06-02, 2006.

Nanni M Pedreschi D Time-focused clustering of trajectories ofNanni, M., Pedreschi, D. Time focused clustering of trajectories of 
moving objects. J. of Intelligent Information Systems, 2006.

Lee, J.-G., Han, J., and Whang, K.-Y., Trajectory Clustering: A g j y g
Partition-and-Group Framework, SIGMOD 2007.

Rinzivillo, Pedreschi, Nanni, Giannotti, Andrienko, Andrienko.
Vi ll d i l i f t d t b iVisually-driven analysis of movement data by progressive 
clustering. J. of Information Visualization, 2008
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Which distance between trajectories?Which distance between trajectories?

Average Euclidean distance

))(),(( 21 dtttd
T∫ ττ

||

))()((
|),(

21
21 T

D T
T
∫=ττ distance between moving 

objects τ1 and τ2 at time t

“Synchronized”“Synchronized” behaviourbehaviour distancedistanceyy
Similar objects = almost always in the same place at the same time

ComputedComputed onon thethe wholewhole trajectorytrajectory
ComputationalComputational aspectsaspects::

Cost = O( |ττ11| + |ττ22| ) (|ττ| = number of points in ττ)

112112

It is a metric => efficient indexing methos allowed



Which kind of clustering?

G l i

g

General requirements:
Non-spherical clusters should be allowed

E.g.: A traffic jam along a road = “snake-shaped” cluster

Tolerance to noise

Low computational cost

Applicability to complex, possibly non-vectorial data

A suitable candidate: Density-based clustering
OPTICS   (Ankerst et al., SIGMOD 99   

113113

( ,

T(rajectory)-OPTICS



A sample datasetA sample dataset

Set of trajectories forming 4 clusters + noise (synthetic)
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T-OPTICS vs. HAC  & K-means

K-means HAC-average

T-OPTICS

ε threshold

115115
Reachability plot
(= objects reordering for distance distribution)



Temporal focusingp g

Different time intervals can show different behavioursDifferent time intervals can show different behaviours
E.g.: objects that are close to each other within a time interval 
can be much distant in other periods of timep

The time interval becomes a parameter
E g : rush hours vs low traffic timesE.g.: rush hours vs. low traffic times

Already supported by the distance measure
Just compute D(ττ1 1 , , ττ22) |T on a time interval T’ ⊆ T

Problem: significant T’ are not always known a priorig y p
An automated mechanism is needed to find them
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Temporal focusingp g

1. Provide a notion of interestingness to be associated 
with time intervals

Defined in terms of estimated quality of the clustering 
extracted on the given time interval

2. Formalize the Temporal focusing task as an 
optimization problem

Discover the time interval that maximizes the interestingness 
measure
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Interactive density-based trajectory clustering

More trajectory distance functions

Rinzivillo, Pedreschi, Nanni, Giannotti, Andrienko, Andrienko.
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Visually-driven analysis of movement data by progressive 
clustering. J. of Information Visualization, 2008



Looking for frequent stops & moves
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Clusters of typical trips
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Cluster 1: from work to home

Observation: the eastern route is chosen more often
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Cluster 2: from home to work

Observation: the eastern route is chosen much more often
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Progressive clustering

Provide the analyst with a library of distance functions, 
each with a clear meaning

St fi d l i th h th iStep refined analysis through the successive 
application of several distance measures

Start with simple and efficient measures (common ends)Start with simple and efficient measures (common ends)

Refine the obtained clusters with more sophisticated 
functionsfunctions
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Process Overview

Simple and very 
efficient distance Datasetefficient distance 

measure
Dataset

More selective and 
particular distance 
functions (or more 

restrictive parameters)
Clusters Noise

Subclusters Subclusters NoiseSubclusters Subclusters Noise
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Mobility data analysis on a realistic GPS dataset

WIND Telecomunicazioni spa (major telecom 
pro ider GeoPKDD partner)provider, GeoPKDD partner)

GSM data (Handover data: aggregated flows between 
adjacent cells)

Other collaborations:
Comune di Milano, Mobility Agency 
Infoblu and OctoTelematics  (GPS receivers on  board of 
cars with special insurance contract)

Experience on a a dataset ofExperience on a a dataset of 
2 M positions, 
17 K vehicles, 
200 K trajectories
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MILANO: data on the mapMILANO: data on the map
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Progressive clustering

First, create a large clusters of trajectories using the g j g
“common ends” distance function, 

Concentrate on the (big) cluster of inward trajectories 
(routes towards the city center)

Refine by creating subclusters using a more 
sophisticated distance function (route similarity)
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5 biggest (sub-)clusters of trajectories towards the city centre
Dark grey: moves occurring in trajectories from several clusters
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Clustering trajectories on “route similarity”

L ft i h l t iddl i d t i ht t d tLeft: peripheral routes; middle: inward routes; right: outward routes.
Rinzivillo, Pedreschi, Nanni, Giannotti, Andrienko, Andrienko
Visually driven analysis of movement data by progressive

129

Visually-driven analysis of movement data by progressive 
clustering. J. of Information Visualization, 2008



Challenges of visually-driven clustering

Progressive refinement through visually-drivenProgressive refinement through visually-driven 
exploration

Progressively complex similarity functionsProgressively complex similarity functions

Scalability

Index structures to support efficient 
neighborhood queries for trajectory clustering 
(Nanni, Pedreschi, Pelekis, Theodoridis, 2008)

Progressive clustering by samplingg g y p g

Incremental clustering and concept drift
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T ffi i i d t kTraffic mining on road network

Mining (typically clustering) of aggregate traffic data g ( yp y g) gg g
over road networks



Network Traffic

Consider a fixed network consisting of a set of non-overlapping regions. 
Regions could beRegions could be

road intersections (e.g. Via del Corso – Via del Tritone) 

landmarks of interest (e.g. Colosseo, Parlamento) 

or even greater areas (e.g. Centro Storico Roma)

R2
R1

R3
R1 R2

R3

R4
R4 R3
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Network Graph

The network is modeled as a directed graph G=(V,E) g p ( )
nodes V regions

edges E  direct connections between regions

R3R1 R4R2

R7R6 R8R5

R11R10R9 R12

R15R14R13 R16
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Capturing traffic through sensors

Each edge e=(v, v’) is equipped with sensor technology that captures 
the movement from region v to region v’.

Definition: The traffic series of a sensor s ∈ S during a time period 
[t t ] i t f th b f d th h thi[ts, te] consists of the number of cars passed through this sensor 
during this period, recorded at Δt intervals and ordered in time: 

TSs = {vi, ti}, ts ≤ ti ≤ te, Δt=ti-ti-1 the transmission rate of the sensors { i i} s i e i i 1 

150

time

150
100

80 … 90

ts tets+Δt ts+2Δt …

v’v
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Network Traffic

Traffic series of the network: TS = {TSs, s ∈ S}

R3R1 R4R2

{ s }

R7R6 R8R5 R7R6 R8R5

R11R10R9 R12

R15R14R13 R16
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Works on Traffic Mining over Road Netwoks

Xiaolei Li, Jiawei Han, Jae-Gil Lee and Hector Gonzalez. Traffic 
Density-Based Discovery of Hot Routes in Road Networks. STD 
2007 (Advances in Spatio-Temporal Databases).

H t G l Ji i H Xi l i Li M t M li kHector Gonzalez, Jiawei Han, Xiaolei Li, Margaret Myslinska, 
John Paul Sondag. Adaptive Fastest Path Computation on a 
Road Network: A Traffic Mining Approach. VLDB 2007

Irene Ntoutsi, Nikos Mitsou, Gerasimos Marketos,Yannis
Theodoridis. Mining Traffic Flow in a Road Network: How does 
the traffic flow? Int Journal of Business Intelligence and Datathe traffic flow? Int. Journal of Business Intelligence and Data 
Mining, 2008 
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Traffic relationships 
Traffic propagation

traffic from e12 is propagated
R3R1 R2 R4e23e12traffic from e12 is propagated 

to e23

This might indicate objects that 
continue moving in a highway

R7R6R5 R8
continue moving in a highway

Traffic split/ spread
ffi f i li i d

R3R1 R2 R4e23e12
traffic from e12 is split into e23 and e26

This might indicate objects that leave 
a highway and follow different 
directions to their destination R7R6R5 R8

e26

Traffic merge
t ffi t t ffi f

R3R1 R2 R4e23e12traffic to e23 merges traffic from e12
and e62

This might indicate objects that enter 
a highway from different directions R7R6R5 R8

e23e12

e62
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A three-level clustering algorithm

A divisive hierarchical clustering algorithm to detect different g g
behaviors of traffic flow 

Th diff t di t di ( ) di (Three different distance measures: disvalue(e1, e2), disshape(e1, 
e2), disstruct(e1, e2) capture different aspects of (dis-)similarity 
of traffic flow between two edges/ road networks:g

edges with similar traffic shape   // disshape

edges located nearby // disstruct

edges with similar traffic values // disvalue
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A hierarchical view of the traffic edges

R5

R1

R6

R2

R7

R3

R8

R4

L1: edges with similar traffic shape
R13

R9

R5

R14

R10

R6

R15

R11

R7

R16

R12

R8

R1 R2 R3 R4

L2: edges with similar traffic shape that are 
also nearby in the network

R13

R9

R5

R14

R10

R6

R15

R11

R7

R16

R12

R8

R1 R2 R3 R4

L3: edges with similar traffic values

R13

R9

R5

R14

R10

R6

R15

R11

R7

R16

R12

R8
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The original traffic network
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Clustering results – L1

Edges with the same color indicate network areas with similar 
traffic shape

141141 141

p



Clustering results – L2

Edges with the same color indicate network areas with 
similar traffic shape and nearby
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Clustering results – L3

Edges with the same color indicate network areas with similar 
traffic shape, nearby and with similar traffic values
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An archaeology of the present

The opportunity to discover, from the 
digital traces of human activity, the g y,
knowledge that makes us comprehend 
timely and precisely the way we live, the y p y y ,
way we use our time and our land.

Mobility data miningy g
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From opportunities to threats

Personal mobility data as gathered by thePersonal mobility data, as gathered by the 
wireless networks, are extremely sensitive

fTheir disclosure may represent a brutal violation of 
the privacy protection rights, i.e., to keep 

fid i lconfidential

the places we visitthe places we visit

the places we live or work at

the people we meet 
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P i i bilitPrivacy-preserving mobility 
data miningdata mining



The naive scientist’s view

Knowing the exact identity of individuals is notKnowing the exact identity of individuals is not 
needed for analytical purposes

De identified mobilit data are eno gh to reconstr ctDe-identified mobility data are enough to reconstruct 
aggregate movement behaviour, pertaining to 
groups of peoplegroups of people. 

Reasoning coherent with European data 
t ti l l d t dprotection laws: personal data, once made 

anonymous, are not subject to privacy law 
t i tirestrictions

Is this reasoning correct?
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Is this reasoning correct?



Unfortunately not!

Making data (reasonably)a nonymous is not easy.

Sometimes, it is possible to reconstruct the exact 
identities from the de-identified data.

Many famous example of re-identification
DaleniusDalenius …

Governor of Massachusetts’ clinical records (Sweeney’s 
experiment, 2001)p , )

America On Line August 2006 crisis: user  re-identified 
from search logs

Two main sources of danger:
Many observations on the same “anonymous” subject

149
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Linking data, after joining separate datasets



Spatio-temporal linkage in Mobility Datap p g y

[almost every day mon-fri
A B

[almost every day mon fri 
between 7:45 – 8:15]Id: 

34567

A B [almost every day mon-fri 
between 17:45 – 18:15]

By intersecting the phone directories of locations A and B we find 
that only one individual lives in A and works in B. 

Id:34567 = Prof. Smith  

Then you discover that on Saturday night Id:34567 usually drives to 
the city red lights district…
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B i id f itBasic ideas for anonymity 
preserving data analysispreserving data analysis



How do people (try to) stay anonymous?

either by camouflageeither by camouflage
pretending to be someone else or 

h lsomewhere else

or by hiding in the crowdor by hiding in the crowd
becoming indistinguishable among many 
thothers
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Concepts for Location Privacy
Location Perturbation RandomizationLocation Perturbation – Randomization 

The user location is represented 
with a fake value

Privacy protection is achieved 
from the fact that the reportedfrom the fact that the reported 
location is false

The accuracy and the amount of 
privacy mainly depends on howprivacy mainly depends on how 
far is the reported location from 
the exact location
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Concepts for Location Privacy
Spatial Cloaking – GeneralizationSpatial Cloaking Generalization 

The user exact location isThe user exact location is 
represented as a region that 
includes the exact user locationincludes the exact user location

An adversary does know thatAn adversary does know that 
the user is located in the region, 
but has no clue where the user 
is exactly located

The area of the region achieves 
a trade-off between user privacy 
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Concepts for Location Privacy
Spatio temporal generalizationSpatio-temporal generalization

Y

In addition to the spatial 
dimension generalizedimension, generalize 
also  the temporal 
dimension

XX

T
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Concepts for Location Privacy
k-anonymityk-anonymity

User’s position is generalized to 
a region containing at least k
usersusers
The user is indistinguishable 
among other k usersamong other k users

The area largely depends on the 
surrounding environmentsurrounding environment.

A value of k =100 may result in a 
very small area downtown Hongvery small area downtown Hong 
Kong, or  a very large area in the 
desert. 10-anonymity
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Privacy- preserving spatio-Privacy- preserving spatio-
temporal data miningtemporal data mining

Trajectory randomization is risky!Trajectory randomization is risky!

Trajectory anonymizationj y y
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A subtle re-identification attack

Disclosure Risks of Distance Preserving Data 
T f tiTransformations

Erkay Savas, Yucel Saygin, Emre Kaplan, and Thomas 
B Pedersen (Sabanci Univ Istanbul)B. Pedersen (Sabanci Univ., Istanbul)

What if the attacker knows:
S t j t iSome trajectories

All mutual distances

Hyper-lateration
Works in d dimensions 
i d 1 i tgiven d + 1 points

If known trajectories are few,
then approximate!
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then approximate!



Red: true traj  Blue: approx traj
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Privacy- preserving spatio-Privacy- preserving spatio-
temporal data miningtemporal data mining

Trajectory randomization is risky!Trajectory randomization is risky!

Trajectory anonymizationj y y
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Trajectory anonymization

Several variants developed in GeoPKDD:p
Abul, Bonchi, Nanni  (Pisa KDD LAB). Int. Conf. Data 
Engineering ICDE 2008

Nergiz, Atzori, Saygin (Sabanci Univ. + Pisa KDD LAB). 
2007 (submitted)

Gkoulalas-Divanis, Verykios (Univ. Thessaly). 2007 
(submitted) 

Pensa Monreale Pinelli Pedreschi (Pisa KDD LAB)Pensa , Monreale, Pinelli, Pedreschi (Pisa KDD LAB) 
PiLBA Int. Workshop on Privacy in Location-Based 
Applications @ ESORICS 2008

Common goal: construct an anonymized version of a 
trajectory dataset, preserving some target analytical 

i
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properties

Different techniques adopted



Example result: Never Walk Alone

Bonchi, Abul, Nanni. Never Walk Alone: Uncertainty for , , y
Anonymity in Moving Objects Databases. ICDE 2008

Basic ideas:Basic ideas:
Trade uncertainty for anonymity: trajectories that are close up 
the uncertainty threshold are indistinguishablet e u ce ta ty t es o d a e d st gu s ab e

Combine k-anonymity and perturbation

Two steps:Two steps:

Cluster trajectories into groups of k similar ones (removing 
tli )outliers)

Perturb trajectories in a cluster so that each one is close to each 
th t th t i t th h ld
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other up to the uncertainty threshold



Trajectory cluster
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Trajectory cluster
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(K,δ) –anonymity set

K = minimum number of trajectories in the set

165

δ = uncertainty threshold (e.g., measurement error of GPS device)



Quality of anonymized datasets

For reasonable values of K and δ, someFor reasonable values of K and δ, some 
interesting analytical properties of the original 
dataset are preserved by the anonymized p y y
trajectories :

density (aggregate count of mobile users indensity (aggregate count of mobile users in 
the spatio-temporal dimension)

Clustering (to some extent )Clustering (to some extent …)

T-patterns: NOT!

Prototype trajectory anonymity toolkit 
available
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P tt P i k A i tiPattern-Preserving k-Anonymization 
of Sequences and its Application to q pp
Mobility Data Mining

Ruggero G. Pensa, Anna Monreale, Fabio Pinelli,Ruggero G. Pensa, Anna Monreale, Fabio Pinelli, 
Dino Pedreschi

PiLBA 08 – Int. Workshop on Privacy in Location-p y
Based Applications @ ESORICS 2008



k-Anonymization of sequences

fIdea : each infrequent subsequence is potentially dangerous

Goal: providing an anonymized dataset of sequences, while
i f t ti l tt ltpreserving frequent sequential pattern results

Given a dataset of sequences D

Provide a dataset of sequences D’ s.t.
1. D’ does not contain any k-infrequent subsequence

2. The collection of k-frequent pattern in D’ is « similar » to the 
collection of k-frequent pattern in D
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k-Anonymization of sequences /2

Prefix-tree based anonymization algorithmy g
1. Build the prefix-tree from D

2 Prune-away all k-infrequent subtrees2. Prune away all k infrequent subtrees

3. Re-build the tree by updating the support of existing 
nodes belonging to pruned subsequences

4. Generate the anonymized dataset D’
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Example (k=2)

Dataset D
B C
A B C D
A B C D

Root Root Root Dataset D’
B C
A B C D
A B C D

B C E B : 2

C : 2

A : 2

B : 2

B : 1

C : 1

A : 2

B : 2

B : 2

C : 2

A : 2

B : 2

B C

E : 1 C : 2 C : 2 C : 2

D : 2 D : 2

Infrequent sequences:
B C E : 1

D : 2
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Experimental results (Milan traffic p (
data)

Pattern support
Pattern collection size
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Key open challenges

Define an acceptable formal measure of p
anonymity protection:

Probability of re-identification (in a givenProbability of re identification (in a given 
context)

A (technically supported) juridical issue!A (technically supported) juridical issue!

Sampling: a necessity and an opportunity!

Necessary for performance/feasibiliy of data 
mining from massive mobility datasets

Good for anonymity (re-identification probability 
decreases)
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Vi l l ti f bilitVisual analytics for mobility 
datadata



Visual analytics for mobility data

A synergy of 
interactive visualization, 

database processing and 

data mining

helps to make sense from large amounts of movement p g
data by interactive, visually-driven exploratory data 
analysis

Prototype created in GeoPKDD.eu, based on the 
Common-GIS system developed at Fraunhofer (Gennady 
and Natalia Andrienko)and Natalia Andrienko)
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Major techniques

Aggregation:gg g
Traffic-oriented view: by time intervals; by space compartments; by 
movement direction; by other point-related movement attributes

Trajectory-oriented view: by time intervals; by general (trajectory-related) 
attributes; by starts and ends; by route similarity (through clustering)

Summarization:Summarization:
Numeric: count, mean, median, …

Spatial: aggregated movesp gg g

Visualization and interaction:
Multiple coordinated views: animated and static maps non cartographicMultiple coordinated views: animated and static maps, non-cartographic 
displays

Interactive filtering: by time, space, cluster membership, attribute values 
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Dynamic aggregates reacting to the filtering



Traffic density patterns (spatio-temporal aggregation)
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Low-speed movement (counts, 3h intervals)

2 075M ti 17 000 i li 200 000 t i tt i2 075M ti 17 000 i li 200 000 t i tt i2.075M punti, 17.000 veicoli, 200.000 traiettorie2.075M punti, 17.000 veicoli, 200.000 traiettorie
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Examples of clusters of trajectories

What is an appropriate way to visualize groups of trajectories?
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Summarized representation of a bunch ofSummarized representation of a bunch of 
trajectories

Many 
small 
moves

1) Trajectories → sequences of “moves” 
between “places”
2) For each pair of “places” compute the 
number of “moves”
3) Represent by vectors (arrows) with 
proportional widths

Major flow

Minor variations
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Defining “places”

1) Extract characteristic points from all trajectories
2) Build areas (e.g. circles) around groups of points and isolated points

Original trajectory Simplified trajectory Characteristic points
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Dynamic aggregation of moves

Each aggregated move is an active object reacting to selection (filtering) of the source data by changing the thickness, 
color, or visibility of the respective vector.color, or visibility of the respective vector.
In particular, aggregated moves react to selection of clusters.

But: not always is a cluster clearly seen…
Possible solution: filter aggregated moves by the 
number of elementary moves (i e trajectory fragments)number of elementary moves (i.e. trajectory fragments) 
they include
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An example of a cluster of trajectories Aggregated moves; all are visible
Aggregated moves occurring in 
20 trajectories or more

182
Aggregated moves occurring in  
15 trajectories or more

Aggregated moves occurring in  
10 trajectories or more

Aggregated moves occurring in  
5 trajectories or more



Exploration of the use of the most popular routes towards the centre by times of the day

05-07h 07-09h 09-11h

18311-13h 13-15h 15-19h



Conclusions



Privacy-preserving Mobility Data Mining 
strives for a win win situationstrives for  a win-win situation

Obtaining the advantages of collective mobility g g y
knowledge without disclosing inadvertently any 
individual mobility knowledge. 
A word of wisdom: solutions can only be 
obtained via an alliance of technology, legal 
regulations and social norms (Rakesh Agrawal)regulations, and social norms (Rakesh Agrawal)
GeoPKDD.eu is in the mix, shaping up the area 

f PP bilit d t i iof PP mobility data mining
Challenge: UbiComp will flood us with new 

l d t (i d t li d tti )complex data (in a decentralized setting)
data miners have only begun to scratch the 

f f thi bl
185

surface of this problem



… trying to accomplish a long-time dreamy g g
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The representation of Napoleon’s Russian campaign of 1812 produced by Charles Joseph Minard in 1861
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