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Abstract. Nonlinear dimensionality reduction aims at providing low-
dimensional representions of high-dimensional data sets. Many new meth-
ods have been proposed in the recent years, but the question of their
assessment and comparison remains open. This paper reviews some of
the existing quality measures that are based on distance ranking and
K-ary neighborhoods. In this context, the definition of the co-ranking
matrix allows the comparison between the ranks in the initial data and
the low-dimensional embedding. Rank errors and concepts such as intru-
sions and extrusions can be associated with different sub-blocks of the
co-ranking matrix. Several quality criteria can be cast within this uni-
fying framework and they are shown to involve one or several of these
blocks. Following this line, simple criteria are proposed, which quantify
two aspects of the embedding quality. A simple experiment illustrates
the soundness of the approach.

1 Introduction

Dimensionality reduction (DR) gathers techniques that provide a meaningful
low-dimensional representation of a high-dimensional data set. Linear DR is
well known, with techniques such as principal component analysis [1] and clas-
sical metric multidimensional scaling [2, 3]. On the other hand, nonlinear di-
mensionality reduction [4] (NLDR) emerged later, with nonlinear variants of
multidimensional scaling [5, 6], such as Sammon’s nonlinear mapping [7]. For
the past twenty five years, this field of research has deeply evolved and after
some interest in neural approaches [8–11], the community has recently focused
on spectral techniques [12–16]. Modern NLDR encompasses the domain of man-
ifold learning and is also closely related to graph embedding [17] and spectral
clustering [18–20].

In the most general setting, dimensionality reduction transforms a set of N
high-dimensional vectors, denoted Ξ = [ξi]1≤i≤N , into N low-dimensional vec-
tors, denoted X = [xi]1≤i≤N . In manifold learning, it is assumed that the vectors
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in Ξ are sampled from a smooth manifold. Under this hypothesis, the goal of
NLDR is then to re-embed the manifold in a space of the lowest possible di-
mensionality, without modifying its topological properties. For this purpose, the
embedding theorem [21] can help deduce the lowest embedding dimensionality,
which is related to the manifold intrinsic dimensionality [22].

In practice however, neither the intrinsic dimensionality nor the topological
properties can easily be identified, starting from a set of points. Therefore, the
goal of NLDR is most often to preserve the structure of the data set, which
is indicated for instance by some sort of neighborhood relationships [8], such as
proximities or similarities. In other words, NLDR provides some low-dimensional
representation that is meaningful in some sense, with respect to those specific
relationships. As a well known example, proximities can be obtained by mea-
suring pairwise distances [7, 23] in the data set Ξ, with some metric. Sometimes
the coordinates in Ξ are unknown and the collected data consist of pairwise
distances. If the data set does not specify all distances, then the problem can
elegantly be modeled using a graph, in which edges are present for known entries
of the pairwise distance matrix. The edge weights can be binary- or real-valued,
depending on the data nature. Some NLDR techniques also involve a graph even
if all pairwise distances are available. For instance, a graph can be used to focus
on small neighborhoods [14] or to approximate geodesic distances [13, 24] with
weighted shortest paths. This illustrates that NLDR and graph embedding share
many similarities.

As a matter of fact, the scientific community has been focusing on the design
of new NLDR methods and the question of quality assessment remains mostly
unanswered. As most NLDR methods optimize a given objective function, a sim-
plistic way to assess the quality is to look at the value of the objective function
after convergence. Obviously, this allows us to compare several runs with e.g. dif-
ferent parameter values, but makes the comparison of different methods unfair.
Another obvious criterion is the reconstruction error. If a NLDR technique pro-
vides us with a mapping M such that x = M(ξ), then the reconstruction error
can be evaluated as the expectation Erec = E{(ξ −M−1(M(ξ)))2}. The recon-
struction error is a universal quality criterion, but it requires the availability of
M and M−1 in closed form, whereas most NLDR methods are nonparametric
(they merely provide values of M for the known vectors ξi). The minimization of
the reconstruction error is the approach that is followed by PCA and nonlinear
auto-encoders [9, 10]. Still another approach mentioned in the literature consists
in using an indirect performance index, such as a classification error (see for
instance [25] and other references in [26]). Obviously, this works only for labeled
data. Eventually, a last possibility consists in sticking to the intrinsic goal of
NLDR and we can try to assess the preservation of the data set structure. Qual-
ity assessment then relies on the same principles as those that guide the design of
an objective function. However, as the objective function needs to be optimized,
it must fulfill some requirements, such as being continuous and differentiable. In
contrast, these constraints can be relaxed in the definition of a quality criterion,
as it just needs to be evaluated. This opens the way to potentially more com-
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plex quality criteria that more faithfully assess the preservation of the data set
structure. First attempts in this direction can be found in the particular case
of self-organizing maps [8]; see for instance the topographic product [27] and
the topographic function [28]. More recently, new criteria for quality assessment
have been proposed, with a broader applicability, such as the trustworthiness
and continuity measures [29], the local continuity meta-criterion [30], and the
mean relative rank errors [4]. All these criteria analyze what happens in K-ary
neighborhoods, for a varying value of K. In practice, these neighborhoods re-
sult from the ranking of distance measures. This is a fundamental difference,
compared to older quality criteria that classically quantify the preservation of
pairwise distances, with a stress function [6, 7].

The first aim of this paper is to review some of these recent rank-based
criteria. Next, the definition of a co-ranking matrix [31] allows us to compare
them from a theoretical point of view, so that a unifying framework can emerge.
Eventually, this framework also provides us with arguments to propose new
measures.

This paper is organized as follows. Section 2 introduces the notations for
distances, ranks, and neighborhoods. Section 3 reviews existing rank-based cri-
teria. Section 4 unifies the different approaches and proposes new ones. Section 5
shows some experimental results. Finally, Section 6 draws the conclusions.

2 Distances, ranks, and neighborhoods

Most NLDR techniques involve distances in a more or less direct way. The symbol
δij denotes the distance from ξi to ξj in the high-dimensional space. Similarly,
dij is the distance from xi to xj in the low-dimensional space. Notice that we
assume that δij = δji and dij = dji, although this hypothesis is not always
required. For instance, it does not hold true if δij and δji stem from distinct
experimental measurements. Starting from distances, we can compute ranks.

The rank of ξj with respect to ξi in the high-dimensional space is written
as ρij = |{k : δik < δij or (δik = δij and 1 ≤ k < j ≤ N)}|. Similarly, the
rank of xj with respect to xi in the low-dimensional space is rij = |{k : dik <
dij or (dik = dij and 1 ≤ k < j ≤ N)}|. Hence, reflexive ranks are set to zero
(ρii = rii = 0) and ranks are unique, i.e. there are no ex aequo ranks: ρij 6= ρik

for k 6= j, even if δij = δik. This means that nonreflexive ranks belong to
{1, . . . , N − 1}. The nonreflexive K-ary neighborhoods of ξi and xi are denoted
by νK

i = {j : 1 ≤ ρij ≤ K} and nK
i = {j : 1 ≤ rij ≤ K}, respectively.

The co-ranking matrix [31] can then be defined as

Q = [qkl]1≤k,l≤N−1 with qkl = |{(i, j) : ρij = k and rij = l}| . (1)

The co-ranking matrix is the joint histogram of the ranks and is actually a
sum of N permutation matrices of size N − 1. With an appropriate gray scale,
the co-ranking matrix can also be displayed and interpreted in a similar way
as a Shepard diagram [5]. Historically, this scatterplot has often been used to
assess results of multidimensional scaling and related methods [23]; it shows
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the distances δij with respect to the corresponding distances dij , for all pairs
(i, j), with i 6= j. The analogy with a Shepard diagram suggests that meaningful
criteria should focus on the upper and lower triangle of the co-ranking matrix
Q. Following this line, we define the rank error to be the difference ρij − rij . We
call an intrusion the event of a positive rank error for some pair (i, j). In other
words, for values of K such that rij ≤ K < ρij , the jth vector is an intruder
in the K-ary neighborhood nK

i , with respect to the genuine neighborhood νK
i .

Similarly, an extrusion denotes the event of a negative rank error. The amplitude
of an intrusion or extrusion is the absolute value of the corresponding rank error.

In order to focus on K-ary neighborhoods, we also define a K-intrusion
(resp. K-extrusion) to be the conjunction of an intrusion (resp. extrusion) for
some pair (i, j) with the event rij < K (resp. ρij < K). We can further
distinguish mild and hard K-intrusions. The former correspond to the event
rij < ρij ≤ K, whereas the latter is associated with the event rij ≤ K < ρij .
Similar definitions for mild and hard K-extrusions can be deduced. Intuitively,
mild K-intrusions and mild K-extrusions correspond to vectors that are respec-
tively “promoted” and “downgraded”, but still remain in both νK

i and nK
i .

The various types of intrusions and extrusions can be associated with different
blocks of the co-ranking matrix. For this purpose, we divide the co-ranking
matrix into four blocks that separate the first K rows and columns. If we define
FK = {1, . . . ,K} and LK = {K +1, . . . , N −1}, the index sets of the upper-left,
upper-right, lower-left, and lower-right blocks are ULK = FK × FK , URK =
FK ×LK , LLK = LK × FK , and LRK = LK ×LK . Similarly, the block covered
by ULK can be split into its main diagonal DK = {(i, i) : 1 ≤ i ≤ K} and lower
and upper triangles LTK = {(i, j) : 1 < i ≤ K and j < i} and UTK = {(i, j) :
1 ≤ i < K and j > i}. According to this division, K-intrusions and K-extrusions
are located in the lower and upper trapezes, respectively (i.e. LTK ∪ LLK and
UTK ∪URK). Hard K-intrusions and K-extrusions are found in the blocks LLK

and URK , respectively. In a similar way, mild K-intrusions and K-extrusions
are counted in the triangles LTK and UTK , respectively.

3 Review of quality criteria

This section reviews some of the recently published criteria that rely on ranks
and K-ary neighborhoods. Beside the definition found in the literature, we give
an equivalent expression in terms of the co-ranking matrix.

The trustworthiness and continuity (T&C) measures [29, 32] are defined as:

WT(K) = 1 −
2

GK

N
∑

i=1

∑

j∈nK

i
\νK

i

(ρij − K) = 1 −
2

GK

∑

(k,l)∈LLK

(k − K)qkl , (2)

WC(K) = 1 −
2

GK

N
∑

i=1

∑

j∈νK

i
\nK

i

(rij − K) = 1 −
2

GK

∑

(k,l)∈URK

(l − K)qkl , (3)
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where the normalizing factor

GK =

{

NK(2N − 3K − 1) if K < N/2
N(N − K)(N − K − 1) if K ≥ N/2

(4)

considers the worst case [26], i.e. ranks are reversed in the low-dimensional space
and the co-ranking matrix is anti-diagonal. Both the trustworthiness and conti-
nuity can theoretically vary between 0 and 1, although the worst case is seldom
encountered in practice. Notice that the embedding quality is described by two
criteria, which distinguish two types of errors. Faraway vectors that become
neighbors increase the trustworthiness error measure ET(K), whereas neighbors
that are embedded faraway from each other increase the continuity error mea-
sure EC(K). As can be seen, the reformulation in terms of the co-ranking matrix
shows that the trustworthiness is related to the hard K-intrusions, whereas the
continuity involves the hard K-extrusions, with some weighting.

The mean relative rank errors [4] (MRREs) rely on the same principle as the
trustworthiness and continuity. They are defined as

En(K) =
1

HK

N
∑

i=1

∑

j∈nK

i

|ρij − rij |

ρij

=
1

HK

∑

(k,l)∈ULK∪LLK

|k − l|

l
qkl , (5)

Eν(K) =
1

HK

N
∑

i=1

∑

j∈νK

i

|ρij − rij |

rij

=
1

HK

∑

(k,l)∈ULK∪URK

|k − l|

k
qkl , (6)

where the normalizing factor HK = N
∑K

k=1 |N − 2k|/k considers the worst
case, like that of T&C. The differences between the MRREs and the T&C hold
in the weighting of the elements qkl and the blocks of Q that are covered. The
MRREs involve the first K rows and colums of Q. Hence, the first error involves
all K-intrusions (hard and mild), along with the mild K-extrusions. The second
error takes into account all K-extrusion and the mild K-intrusions.

The local continuity meta-criterion [30] (LCMC) is defined as

ULC(K) =
1

NK

N
∑

i=1

(

|nK
i ∩ νK

i | −
K2

N − 1

)

=
K

1 − N
+

1

NK

∑

(k,l)∈ULK

qkl , (7)

where the subtracted term is a “baseline” that corresponds to the expected
overlap between two subsets of K elements out of N − 1. In contrast to the
MRREs and T&C, the LCMC yields a single quantity that is computed over the
block ULK of Q. Notice also that the elements qkl in the block ULK are not
weighted in the sum and that the normalization is simpler.

From an intuitive point of view, T&C and MRREs try to detect what goes
wrong in a given embedding, whereas the LCMC accounts for things that work
well. The prominent strength of T&C and MRREs is their ability to distinguish
two sorts of undesired events. On the other hand, in contrast to the LCMC, they
cannot directly express the overall performance of an NLDR method by means
of a single scalar.
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4 Unifying framework

The error and quality measures described in the previous section can be related
to the concepts of precision and recall (P&R) in the domain of information
retrieval. The precision is the proportion of relevant items among the retrieved
ones, whereas the recall is the proportion of retrieved items among the relevant
ones. For rank-based criteria, relevant items are the indices that belong to νK

i ,
whereas nK

i contains the retrieved indices. The P&R are themselves related to
the concepts of false positive and false negative in classification. False positive
decrease the precision and false negatives decrease the recall. If we compare the
retrieved neighborhoods to the relevant ones, the blocks of Q covered by ULK ,
LLK , URK , and LRK contain the true positives, the false positives, the false
negatives, and the true negatives, respectively. Hence, the LCMC quantifies the
true positives, the T&C focus on the false positives and false negatives, and the
MRREs encompass the positives (true and false) and negatives (true and false).
Obviously, as nK

i and νK
i have the same size, the numbers of false positives and

false negatives are the same. Each element of νK
i that is missed in nK

i (a false
negative) is replaced with an incorrect neighbor (a false positive). Formally, as

Q is a sum of N permutation matrices, we can see that
∑N−1

l=1 qkl = N and
∑N−1

k=1 qkl = N . As we compute ranks starting from N reference points, we have
always N kth neighbors. Therefore, we have

∑

(k,l)∈ULK∪LLK

qkl =
∑

(k,l)∈ULK∪URK

qkl = KN and
∑

(k,l)∈LLK

qkl =
∑

(k,l)∈URK

qkl .

(8)
This shows that the numbers of hard K-intrusions and hard K-extrusions are
equal. As a corollary, without an appropriate weighting of the elements qkl, we
would end up with the equalities WT(K) = WC(K) and Eν(K) = En(K). On
the other hand, the absence of weighting in the LCMC is obviously not critical.

At this point, we see that the analogy between T&C on one side, and false
positives and negatives on the other side, must be interpreted carefully. Hence,
T&C do not aim at counting the average number of false positives/negatives in
K-ary neighborhoods. Instead, the goal consists in estimating how bad data vec-
tors are misranked. This suggests that meaningful criteria should be computed
on both sides of the diagonal of the co-ranking matrix Q, in order to optimally
reveal the dominance of either intrusions or extrusions. For instance, weighted
averages that account for all K-intrusions and K-extrusions can be written as

W v,w
N (K) =

1

CK

∑

(k,l)∈LTK∪LLK

(k − l)v

kw
qkl , (9)

W v,w
X (K) =

1

CK

∑

(k,l)∈UTK∪URK

(l − k)v

lw
qkl , (10)

where CK = N
∑K

k=1 max{0, (N − 2k)w/kv}. The exponents v and w can be
adjusted in order to emphasize large rank differences, relatively to the reference
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rank. Choosing v = 1 and w = 1 gives the same weighting as in MRREs, whereas
the combination v = 1 and w = 0 leads to a similar weighting as that of T&C.
Looking at the blocks they are covering, the two proposed criteria occupy an
intermediate position between T&C and MRREs: they involve more elements
than the former, but fewer than the latter.

As a matter of fact, quantities such as W v,w
N (K) and W v,w

X (K) rely on a
more or less arbitrary weighting. Based on the observation that the numbers of
hard K-intrusions and hard K-extrusions are equal, unweighted averages seem
to be useless at first sight. However, if we follow the same idea as that behind
the LCMC, we can instead focus on what happens inside K-ary neighborhoods
and write [31]

UN(K) =
1

KN

∑

(k,l)∈UTK

qkl , UX(K) =
1

KN

∑

(k,l)∈LTK

qkl , (11)

and

UP(K) =
1

KN

∑

(k,l)∈DK

qkl . (12)

The first two quantities correspond to the fractions of mild K-intrusions and
mild K-extrusions, respectively. The quantity UP(K) indicates the fraction of
vectors that keep the same rank in both νK

i and nK
i . The sum of these three

fractions is closely related to the LCMC (up to the baseline term); it can be
written as

Q(K) = UP(K) + UN(K) + UX(K) = ULC(K) +
K

N − 1
(13)

and quantifies the overall quality of an embedding. On the other hand, the
difference of the two fractions UN(K) and UX(K) can be denoted by

B(K) = UN(K) − UX(K) . (14)

This quantity indicates the “behavior” of an NLDR method, that is, whether
it tends to produce an “intrusive” (B(K) > 0) or “extrusive” (B(K) < 0)
embedding. Notice that (8) guarantees that B(K) is equal to the difference
between the fractions of all K-intrusions and all K-extrusions (both mild and
hard ones). This can be formally written as B(K) = W 0,0

N − W 0,0
X .

5 Experiment: the hollow sphere

In order to illustrate the different quality criteria, thousand points are randomly
drawn from a simple manifold, namely a hollow sphere whose radius is equal to
one. A first data set includes the noisefree points, whereas the second is formed
by adding Gaussian noise with standard deviation equal to 0.05 to the same
points. Next, the manifold has been embedded in a two-dimensional space with
Sammon’s nonlinear mapping [7] (NLM) and curvilinear component analysis [23]
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(CCA). Notice that we have implemented the version of CCA described in [33],
which proves to be more robust against noise. The literature indicates [4, 32] that
NLM is known to “crush” the manifold (faraway points can become neighbors),
whereas CCA can “tear” the manifold (some close neighbors can be embedded
faraway from each other). In other words, this means that NLM tends to produce
“intrusive” embeddings whereas CCA rather works in an “extrusive” way.

In order to present results that can be easily compared, the following quan-
tities are displayed: {Q(K), B(K)} in Fig. 1, {2 − Wn(K) − Wν(K),Wn(K) −
Wν(K)} in Fig. 2, and {WT(K) + WC(K),WC(K) − WT(K)} in Fig. 3. Each
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Fig. 1. Quality assessment of the hollow sphere embedding: Q(K) and B(K) for NLM
and CCA, for noisefree as well as noisy data.

figure thus includes as many pairs of curves as there are methods to compare.
Each pair of curves refers to an overall quality criterion and a behavior indicator,
in the same spirit as Q(K) and B(K). In each figure, the left diagram shows
the whole curves, for 1 ≤ K ≤ N − 1; the upper right diagram focuses on the
quality criterion for small values of K, whereas the last one does the same for the
behavior indicator. In Fig. 1, the dotted ascending line reprensents the LCMC
baseline and highlights the connection with Q(K).

As can be seen, all three pairs of curves show that (i) CCA outperforms NLM
and (ii) these two methods have antagonist behaviors, as previously mentioned.
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Fig. 2. Quality assessment of the hollow sphere embedding: 2 − Wn(K)−Wν(K) and
Wn(K) − Wν(K) for NLM and CCA, for noisefree as well as noisy data.

Looking specifically at quantities that involve a weighting of the co-ranking
matrix elements, we can confirm that for small values of K both the MRREs
and T&C provide similar results. For larger values, we can see that the common
weighting used in the MRREs gives a higher importance to local errors; as a
consequence, the curves essentially remain flat when K grows. On the other
hand, the curves of T&C drop to zero, because of the particular weighting and
since the area of the involved blocks decreases as K grows. This explains why
for those criteria the curves of NLM and CCA can rejoin or cross each other
as K grows. As to noise, its absence or presence has little influence on the four
pairs of weighted averages, although a slight difference can be observed in favor
of the noisefree data set.

At this point, an important result is the ability of Q(K) and B(K) to dis-
tinguish the antagonist behaviors of NLM and CCA without any (arbitrary)
weighting of the co-ranking matrix elements. For instance, Q(K) shows that if
CCA succeeds in preserving local neighborhoods better than NLM, this is at
the expense of sacrifying the preservation of the global manifold shape. This
is illustrated by the crossing of CCA and NLM curves for K ≈ 500 in Fig. 1.
Unweighted averages also clearly identify the effect of noise. For NLM as well as
CCA and for small values of K, a marked gap separates the curves associated
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Fig. 3. Quality assessment of the hollow sphere embedding: WT(K) + WC(K) and
WC(K) − WT(K) for NLM and CCA, for noisefree as well as noisy data.

with the noisy and noisefree data sets. This gap then vanishes as K grows. This
is expected and corresponds to noise flattening on small scales. In particular, the
evolution of B(K) for the noisy data set embedded with CCA conveys interest-
ing information. This method is known to be “extrusive” and it indeed tears the
sphere. Locally however, noise must be flattened, what corresponds to an intru-
sive behavior. Such a behavior reversion is nicely rendered by B(K), not by the
other criteria. The explanation resides in the fact that noise flattening generates
many small-amplitude intrusions, whereas tearing a manifold generally causes a
few large-amplitude extrusions. Hence, depending on the weighting of the rank
errors, the contributions of either intrusions or extrusions can dominate. Obvi-
ously, weighted averages give too much importance to intrusions or extrusions
associated with large rank errors.

6 Conclusions

This paper has reviewed several quality criteria for the assessment of nonlinear
dimensionality reduction. All of them rely on distance rankings in both the high-
and low-dimensional spaces. The definition of the co-ranking matrix allows us to
cast them within a unifying framework. The literature emphasizes the connection
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of these rank-based criteria with fundamental concepts taken from information
retrieval (precision and recall) or classification (false positives and false nega-
tives). Properties of the co-ranking matrix show however that these analogies
should however be considered carefully. In constrast, the co-ranking matrix can
be interpreted in a similar way as a Shepard diagram. Therefore quality crite-
ria should focus on the rank errors that are distributed on both sides of the
co-ranking matrix diagonal, namely intrusions and extrusions. According to this
observation we have proposed weighted and unweighted averages that are com-
puted on various blocks or triangles of the co-ranking matrix. Experiments show
the soundness of the approach based on the co-ranking matrix. In particular, they
show that unweighted averages of the co-ranking matrix elements are sufficient
and that any weighting inevitably turns out to be arbitrary. More importantly,
weighted averages tend to emphasize some types of embedding errors and can
fail to detect others.
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