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Abstract. Feature selection is an effective approach to reducing dimen-
sionality by selecting relevant original features. In this work, we stud-
ied a novel problem of multi-source feature selection for unlabeled data:
given multiple heterogeneous data sources (or data sets), select features
from one source of interest by integrating information from various data
sources. In essence, we investigate how we can employ the information
contained in multiple data sources to effectively derive intrinsic relation-
ships that can help select more meaningful (or domain relevant) features.
We studied how to adjust the covariance matrix of a data set using the
geometric structure obtained from multiple data sources, and how to se-
lect features of the target source using geometry-dependent covariance.
We designed and conducted experiments to systematically compare the
proposed approach with representative methods in our attempt to solve
the novel problem of multi-source feature selection. The empirical study
demonstrated the efficacy and potential of multi-source feature selection.

1 Introduction

Much progress has been made over the last decade in developing effective feature
selection algorithms [1]. Many feature selection algorithms have been developed
and proven to be effective in handling data of single source. One area in which fea-
ture selection is intensively used is bioinformatics where high-throughput tech-
niques generate data (e.g., genomics and proteomics) with thousands of dimen-
sions but only hundreds of samples. Recent development in bioinformatics has
made various data sources available. For example, recent work has revealed the
existence of a class of small non-coding RNA species in addition to messenger
RNA, known as microRNAs (miRNAs), which have critical function cross vari-
ous biological processes. The new availability of multiple data sources presents
unprecedented opportunities to advance research enabling us solve previously
unsolvable problems. This is because each data source has singleton strengths
that may help find intrinsic relationships that can be found by using multi-source
data. For instance, the miRNA profiles are surprisingly informative, reflecting
the developmental lineage and differentiation state of the tumors [2]. In their
work, Lu, et al. successfully classified poorly differentiated tumors using miRNA
expression profiles, whereas messenger RNA profiles were highly inaccurate. The
manifestation of their work is that judiciously using additional data sources can
help achieve better learning performance.
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In this work, we studied a novel problem of selecting features from a data set
of interest with additional data sources. It is an unsupervised feature selection
problem arising from a study of bioinformatical cancer research in which cancer-
ous samples are collected with both messenger RNA (mRNA) and miRNA (i.e.,
two data sources), and we need to find pertinent genes from the mRNA data
(or the target data) for biological investigation. Since late 90’s, the demand for
unsupervised feature selection increases as data evolve with the rapid growth of
computer generated data, text/Web data, and high-throughput data in genomics
and proteomics [3]. Many unsupervised feature selection algorithms have been
developed [4–6]. Most data collected are without class labels since labeling data
can incur huge costs. Without any label information, one idea for unsupervised
feature selection is to find features that can promote the data separability. The
goal of unsupervised feature selection can be defined as finding the smallest fea-
ture subset that best uncovers “interesting natural” clusters from data according
a chosen criterion [7]. Although various approaches to unsupervised feature se-
lection have been proposed, to the best of our knowledge, the potential of using
additional data sources in unsupervised feature selection has not been explored.
This work presented our approach to addressing the novel problem of unsuper-
vised feature selection with multi-source data. Given multiple data sources, a
global geometric pattern can be extracted to reflect the intrinsic relationships
among instances [8]. We propose to use the obtained global geometric pattern
in covariance analysis for multi-source feature selection.

2 Notations and Definitions

Assume we have H data sources, D1,. . ., DH jointly depicting the same set of
N objects o1, . . . ,oN . In a data source D, the N objects are represented by N
instances as X = (x1,x2, . . . ,xN ), xi ∈ RM . We use F1, F2, . . . , FM to denote
the M features, and f 1, . . . , f M are the corresponding feature vectors1. In this
work, we utilize spectral graph theory [9] as a tool to represent and explore the
geometric structure of a data. Let G denote the graph represents relationships
among instances, its similarity matrix is denoted by W (i, j) = wij . Let d denote

the vector: d = {d1, d2,..., dN}, where di =
∑N

k=1
wik, the degree matrix D of

graph G is defined by: D(i, j) = di if i = j, and 0 otherwise. Given D and W ,
the Laplacian matrix L and normalized Laplacian matrix L are defined as:

L = D − W ; L = D−

1

2 LD−

1

2 (1)

It is well known that the leading eigenvectors of L forms the soft cluster indi-
cators of the data [10]. Also in this work we denote S+, the space of symmetric
positive semidefinite matrices; K, the kernel matrix; C, the covariance matrix,
1, the vector with all its elements equal to 1 and I, the identity matrix.

1 We do not assume all data sources have this feature-instance representation. Repre-
sentations can be heterogenous. For example a data source may only provide instance
similarity via kernel matrix.
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3 Multi-Source Feature Selection

Given H data sources, D1, . . . , DH that jointly depict a set of N objects, let
Dt (1 ≤ t ≤ H) be the target source for feature selection. The task of Multi-
Source Feature Selection is to identify relevant features from Dt according to the
information extracted from the H data sources2. With multiple data sources,
the key issue is how to integrate information for selecting features. An intuitive
way for information integration is to learn a global geometric pattern from all
sources to reflect the intrinsic relationships among instances [8]. With a global
geometric pattern, the issue now becomes how to use it effectively for feature
selection. Below we introduce the concept of geometry-dependent covariance,
which enables us to use the global geometric pattern in covariance analysis to
select features. Based on geometry-dependent covariance we propose GDCOV,
a framework for multi-source feature selection.

3.1 Geometry Dependent Covariance

Let X = (x1, ...,xn) be a data set containing n instances. The sample covariance
matrix of X is given by:

C =
1

n − 1

n∑

k=1

(xk − x̄) (xk − x̄)
T

, x̄ =
1

n

n∑

k=1

xk. (2)

C is an unbiased estimator of the covariance matrix. It captures the correlation
between all possible feature pairs, and is symmetric positive semidefinite. Let
Ci,j be the ij-th element of C. It measures the covariance between features Fi

and Fj , and is calculated by:

Ci,j =
1

n − 1

(
f i − f̄i · 1

)T (
f j − f̄j · 1

)
, f̄i =

n∑

k=1

fik. (3)

In this work we propose to adjust the covariance measure between features
according to the geometric structure of the objects. We give the definition of
geometry-dependent sample covariance.

Definition 1. Geometry-Dependent Sample Covariance with L. Given fi and

fj, the feature vectors of features Fi and Fj, and L, a Laplacian matrix, the

Geometry-Dependent Sample Covariance between Fi and Fj is given by:

Ĉi,j =
1

n − 1

(
fi − f̄i · 1

)T
Γ (L)

(
fj − f̄j · 1

)
, (4)

where Γ : S+ → S+ is a prescribed spectral matrix function induced from an

non-increasing real function of positive input, γ : (0,∞) → (0,∞), γ(0) = 0.

2 We allow feature selection on more than one sources, by specifying multiple targets.
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Let A ∈ S+, A = UΣUT be the singular value decomposition (SVD) [11] of A,
where UT U = I and Σ = diag (λ1, . . . , λn), Γ (A) is given by:

Γ (A) = UΣ̂UT , Σ̂ = diag (γ (λ1) , ..., γ (λn)) (5)

An example of such functions is: γ (λ) = 0 if λ = 0, and 1

λ
otherwise. This

gives Γ (L) = L+. And Ĉi,j = 1

n−1

(
f i − f̄i · 1

)T
L+

(
f j − f̄j · 1

)
. Computing

Ci,j , the sample covariance, requires centralizing each feature vector to have zero

mean. However we can show that the step is redundant for calculating, Ĉi,j , the
geometry-dependant sample covariance.

Theorem 1. For ∀fi, fj ∈ R
n, we have the following equation:

Ĉi,j =
1

n − 1

(
fi − f̄i · 1

)T
Γ (L)

(
fj − f̄j · 1

)
=

1

n − 1
fi

T Γ (L)fj (6)

Proof : Let L = U1Σ1U
T
1 be the truncated SVD of L. Since γ(0) = 0, to prove

the theorem it is sufficient to show that UT
1 1 = 0. Because of L1 = 0, we

have 1T U1Σ1U
T
1 1 = 0, which means Σ

1

2

1 UT
1 1 = 0. Since the diagonal elements

of Σ1 are all larger than zero, we have UT
1 1 = 0. �

In Equations (4) and (6), f and L are used to calculate the covariance mea-
sure. However the scale of the two factors can affect the measure arbitrarily. An
effective way to handle this issue is to apply normalization on both f and L. Let

f̃ =
∥∥∥D

1

2 f

∥∥∥
−1

· D
1

2 f (7)

be the normalized feature vector 3 of f . Based on Equation (6) of Theorem 1,
we can define a geometry-dependent covariance measure using the normalized
Laplacian matrix L:

Definition 2. Geometry-Dependent Sample Covariance with L. Given f̃i and

f̃j, the normalized feature vectors, and L, the normalized Laplacian matrix, the

Geometry-Dependent Sample Covariance between Fi and Fj is given by:

C̃i,j =
1

n − 1
f̃i

T
Γ (L)f̃j , (8)

For geometry-dependent covariance matrices Ĉ and C̃, we have the following
theorems hold:

Theorem 2. Assume all features have unit norm, let W = 1

n
· 11T , we have

Ĉ = C̃ = γ(1) · C, where C is the standard covariance matrix.

3 The form of normalization is commonly used in spectral dimension reduction, e.g.,
Laplacian Eigenmap [12]. Basically, we adjust the feature vector according to data
density before normalize it.
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Theorem 3. Ĉ and C̃ are both symmetric and positive semidefinite.

The proof of Theorems 2 and 3 are straightforward, we therefore ignore them
due to the space limit. Theorem 2 says that by setting W in a special form,
the geometry-dependent covariance matrix is equivalent to a scaled standard
covariance matrix. Theorem 3 tells that since any symmetric positive semidefinite
matrix is a valid covariance matrix, Ĉ and C̃ are valid as covariance matrices.

Intuition of Geometry-Dependent Covariance Given two feature vectors,
f i and f j , the geometry-dependent covariance measures their correlation by
considering geometric structure captured by the Laplacian matrix L. To see
this, letting L = UΣUT be the SVD of L, we can decompose (n − 1)Ĉi,j as((

f i − f̄i · 1
)T

UΓ (Σ)
1

2

)(
Γ (Σ)

1

2 UT
(
f j − f̄j · 1

))
. Instead of calculating the

covariance by directly applying inner product on
(
f i − f̄i · 1

)
and

(
f j − f̄j · 1

)
,

geometry-dependent covariance first projects the two vectors into the space
spanned by the eigenvectors of L, then reweight the transformed vectors using
the eigenvalues of the corresponding coordinates. According to spectral cluster
theory [10, 13], the eigenvectors of L are the soft cluster indicators and the cor-
responding eigenvalues indicate their consistency with the geometric structure
of the data. Let U = (u1, . . . ,un), ai = uT

i

(
f − f̄ · 1

)
. We have:

(
Γ (Σ)

1

2 UT
(
f − f̄ · 1

))
=

(
a1γ(λ1)

1

2 , . . . , anγ(λn)
1

2

)T

(9)

Equation (9) answers two questions: 1) Why should γ(·) be an non-increasing
function of positive input? and 2) why is the covariance measure geometry de-
pendent? First, the eigenvalues of L are related to the cut values associated
with the corresponding eigenvectors, and measure the consistency of eigenvec-
tors with the structure of the graph. The smaller the value, the more consistent
the eigenvector. If we use these eigenvectors as the coordinates for projection,
a non-increasing function γ(·) ensures to assign larger weights to the coordi-
nates, which are more consistent with the geometric structure of the data. The
reweightting effect of γ(·) helps answer the second question. Assume the central-
ized feature vectors have been normalized to have unit norm. A non-increasing
γ(·) ensures to assign small weights to eigenvectors which are inconsistent to
the given geometric pattern. If a feature vector f only aligns to inconsistent
eigenvectors, the reweightting ensures that all elements in the weighted vector
be small. Thus, in calculating covariance, the inner product between it and an-
other weighted vector will be small, even if the two vectors align well. Similar
analysis holds for the geometry-dependent covariance defined with L. Note in
Equation (9), all eigen-pairs are used to evaluate features, however if γ(·) returns
zero on the bottom eigenvalues, we can also achieve the effect of removing the
bottom eigen-pairs from consideration, which is a mechanism commonly used in
spectral dimension reduction and clustering for denoising [12].

Efficient Calculation of Geometry-Dependent Covariance The calcula-
tion of geometry-dependent covariance involves a spectral matrix function in-
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duced from a non-increasing real function, which may require a full eigen de-
composition on L or L that has a time complexity of O(N3), where N is the
number of instances. We show that for the geometry-dependant covariance de-
fined with L, assuming W is positive semidefinite4, we are able to obtain Γ (L)
in O(N2) with a special definition of γ(·).

Theorem 4. Given γ(·) defined as: γ (λ) = 0, if λ = 0, and 1 − λ, otherwise.

We have: Γ (L) = D−

1

2 WD−

1

2 −
(
D

1

2 11T D
1

2

)
/
(
1T D1

)
Under this γ(·),

C̃ =
1

n − 1
ΠX

(
W −

W11T W

1T W1

)
XT Π, (10)

where Π is the diagonal matrix with Πi,i =
∥∥∥D

1

2 fi

∥∥∥
−1

3.2 Feature Selection with Multiple Data Sources

Given multiple data sources jointly depicting a set of objects, we can extract
a global geometric pattern that reflects the intrinsic relationships among in-
stances. The obtained global geometric pattern can be then used in the proposed
geometry-dependent covariance for feature selection.

Global Geometric Pattern Extraction Given multiple local geometric pat-
terns, a global pattern can be obtained by linearly combining local patterns [8,
14] as follows.

Wglobal =

H∑

i=1

αiWi (11)

In the equation, Wis are the geometric patterns extracted from each data source,
and αis are the combination coefficients, which can be learnt automatically from
data in either supervised [8] or unsupervised [15, 16] ways. The combination
coefficients can also be assigned by domain experts according to their domain
knowledge5 [14]. We refer readers to literature for comprehensive study on the
research issues of kernel combination.

Feature Selection with Global Geometric Pattern Given multiple het-
erogenous data sources, we now use the global geometric pattern extracted from
all data sources to select features for the target data source. With the global ge-
ometric pattern obtained from multiple data sources, one can build a geometry-
dependent sample covariance matrix based on which features can be selected
using two methods: 1) GPCOVvar: sorting the diagonal of the covariance ma-
trix and choosing the features that have the biggest variances; 2) GPCOVspca:
applying sparse principle component analysis (SPCA) to select a set of features

4 This ensures the eigenvalues of L is bounded by 1 from above, so that γ(·) is valid.
5 This provides a way to incorporate domain knowledge
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that can maximally retain the total variance. As discussed in the intuition of the
geometry-dependent covariance, for C̃i,i to achieve a big value, f̃ i must align well
to the eigenvectors that are consistent with the geometric structure depicted by
L. In other words, a bigger C̃i,i indicates f̃ i is more consistent with the global
geometry pattern. Therefore selecting features according to the first method is
equivalent to selecting features which are consistent to the structure of the global
geometry pattern. Similar analysis holds for Ĉ, assuming all features have a sim-
ilar scale. Since the first method measures feature relevance individually for each
feature, it may select a feature set with redundant features. The second method,
applying sparse principle component analysis such as the one proposed in [17],
considers the interacting effects among features, and is able to select a feature
set containing less redundancy.

3.3 GDCOV - the Framework

The proposed framework for multi-source feature selection is based on analysis
of geometry-dependent covariance, and is realized in Algorithm 1. We give a time
complexity analysis for the proposed multi-source feature selection framework.
Since the H data sources are of heterogeneous representation, the time com-
plexity of constructing the local pattern on each data source can vary greatly.
Assuming each data sources has M features to depict the N objects, and we use
RBF kernel to record the local geometric pattern. Then the time complexity of
the first step is O(HMN2). Assume we linearly combine Wis with a set of pre-
scribed combination coefficients, the cost is of the second step is O(HN2). Using
the method specified in Theorem 4 to form the geometry-dependent covariance
matrix, the cost is O(MN2 + M2). Then selecting features based on the covari-
ance matrix requires O(M log M), if we use features variance to select features;
or O(M3), if we use the SPCA approach proposed in [17]. Hence the overall time
complexity of GDCOV with the above specification is O(M2 + HMN2) if we
use feature variance to select features, otherwise it is O(M3 + HMN2).

Algorithm 1: GDCOV - a framework for multi-source feature se-
lection with geometry-dependent covariance

Input: D1, . . . ,DH , X, γ(·)
Output: SF - the selected features list
for each Di do1

Construct Wi, the local geometric pattern;2

end3

Obtain global pattern W from W1, . . . , WH ;4

Form the geometry-dependent covariance matrix C using the global5

pattern W ;
Select features according to C and form SF;6

Return SF;7
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4 Experimental Study

We empirically evaluate the performance of GDCOV and compare multi-source
with single source feature selection on a biological data set: miRNA-mRNA.
In our experiments, we found that C̃ provides more robust performance than
Ĉ, i.e., the normalization step does lead to better performance. The results we
presented and analyzed in this section are all produced from C̃, the geometry-
dependent sample covariance matrix defined with L. In order to objectively and
systematically evaluate the performance of GDCOV, we use accuracy as well as
the feature biological relevance as performance measures. Recall that our algo-
rithm is for unsupervised feature selection using multi-source data, and no class
label information is used in calculation of geometry-dependent covariance. For
miRNA-mRNA Data, the biological relevance of genes is evaluated by checking
whether the genes are cancer related by using gene function annotation infor-
mation from the Ingenuity Pathways Analysis (IPA) system [18].

4.1 Experiment Setup

In the experiment, we compare multi-source feature selection with single source
feature selection. For feature selection using single data source we choose 2 unsu-
pervised algorithms as baseline: SEPER [19] and pathSPCA [17]. To obtain local
geometric patterns, we build RBF kernel for local data sources. To extract the
global geometric pattern, we use two unsupervised kernel learning algorithms:
A-KPCA [15] and NAML [16]. In GDCOV, we use the real function defined in
Theorem 4 as γ(·). We apply one-nearest-neighbor classifier with selected fea-
tures, and use its accuracy to measure feature quality. All reported results are
based on averaging the accuracy from 10 trials of experiments.

4.2 Data Sets

miRNA-mRNA Data The data set consists of two sets of gene expression pro-
files from a mixture of 88 normal and cancerous tissue samples: a miRNA expres-
sion profile for 151 human miRNAs and a mRNA expression profiles for 16,063

human mRNAs (the target) [2, 20]. The 11 involved tissues are: Colon, Pan-
creas, Kidney, Bladder, Prostate, Ovary, Uterus, Lung, Mesothelioma, Melanoma
and Breast. Among the 11 different tissues, 4 of them, Mesothelioma, Uterus,
Colon and Pancreas, have at least 7 cancerous samples, and totally contribute
33 cancerous samples to the whole data. For each sample we have both miRNA
and mRNA expression profiles. It is observed in [2] that comparing with mRNA,
miRNA profiles is of more power for discriminating cancer from noncancer sam-
ples as well as cancerous samples of different types of tissues.

4.3 Results on miRNA-mRNA Data

For miRNA-mRNA data, we run each feature selection algorithm to obtained
a ranked gene list and evaluate the quality of the top genes in each list via
checking their power on distinguishing cancer and noncancer samples as well
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as the 33 cancerous samples from 4 different types of tissues. We also evaluate
the biological relevance of the top genes in each list by checking how many
of them are cancer related. In the experiment, A-KPCA returns a combination
coefficient of (0.447, 0.553), that is miRNA: 0.447 and mRNA: 0.553. And NAML
returns a combination coefficient of (0.005, 0.995). We also tried three prescribed
combination coefficients to linearly combine the two local geometric patterns:
(1, 0), (0.7, 0.3), and (0, 1). The first and third coefficients correspond to using
only miRNA and mRNA data, respectively. The second one corresponds to use
both miRNA (0.7) and mRNA (0.3). We assign miRNA data more weight, since
exiting findings in the literature suggest that miRNA has better discriminative
power. Here multi-source feature selection corresponds to the cases of using
GDCOV with miRNA, mi&mRNA, A-KPCA and NAML. GDCOV+miRNA is
multi-source feature selection, since we learn geometric pattern from miRNA
profile, while select features for mRNA profile.

Cancer vs. Noncancer Table 1 compares two unsupervised baseline feature
selection algorithms using mRNA profiles (the target data source) with GD-
COV using miRNA profiles, mRNA profiles and both profiles to select features
on mRNA profiles. From the table we can see that by using miRNA profiles or
both profiles, GDCOV select features that provide better accuracy. The obser-
vation suggests that, (1) the geometric pattern obtained from miRNA profiles
indeed possesses better discriminative power, which is consistent with the find-
ings in [2]. (2) By combining multiple data sources we are able to achieve better
performance than using any individual data source. This is consistent with the
observations in [8]. And (3) given a geometric pattern with higher quality, GD-
COV selects better features. This supports the use of multiple data sources in
feature selection, and shows GDCOV is effective. We also notice that using only
mRNA profiles, GDCOV outperforms SPCA and is comparable with SEPER.

Algorithm 2 5 10 15 20 30 50 Ave

SPCA 0.31 0.31 0.38 0.41 0.66 0.60 0.64 0.47

SEPER 0.62 0.70 0.77 0.83 0.84 0.81 0.86 0.77

GDCOV 0.68 0.78 0.72 0.72 0.74 0.78 0.73 0.73
mRNA 0.68 0.78 0.72 0.78 0.75 0.77 0.69 0.74

GDCOV 0.67 0.74 0.79 0.90 0.82 0.86 0.93 0.82
miRNA 0.69 0.64 0.73 0.84 0.89 0.84 0.85 0.78

GDCOV 0.67 0.73 0.88 0.86 0.88 0.86 0.94 0.83

mi&mRNA 0.69 0.68 0.72 0.89 0.88 0.85 0.85 0.79

GDCOV 0.62 0.68 0.88 0.91 0.91 0.90 0.93 0.83

A-KPCA 0.69 0.59 0.72 0.89 0.88 0.84 0.88 0.78

GDCOV 0.68 0.78 0.70 0.76 0.76 0.77 0.78 0.75
NAML 0.68 0.78 0.71 0.84 0.80 0.74 0.73 0.75

Table 1. Cancer vs. Non-Cancer: accuracy achieved by algorithms. mi&mRNA

stands for combining with the prescribed coefficient (0.7, 0.3). Numbers with boldface
indicate the highest number achieved in each case. For GDCOV, the first and the

second row stand for GDCOVvar and GDCOVSPCA respectively.
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Four Different Types of Cancer Table 2 contains the results of using genes
selected by each algorithm to distinguish cancerous samples from 4 different
types of tissues. Since the number of instances becomes fewer, while the number
of classes becomes larger, we observe that the performance of the algorithms
using single data source degenerate significantly. However, on the other hand,
we also observe that by using multiple data sources GDCOV’s performance is
consistently good. This indicates that (1) GDCOV is able to select good features
according to the intrinsic global pattern. (2) The geometric patterns obtained
from miRNA profile as well as both profiles are relatively stable - genes selected
by GDCOV are discriminative for identifying cancer and noncancer samples as
well as cancerous samples from different tissues, indicating that they may be
consistent with the intrinsic structure of the underlying model.

Algorithm 2 5 10 15 20 30 50 Ave

SPCA 0.22 0.25 0.26 0.26 0.34 0.36 0.45 0.31

SEPER 0.15 0.21 0.39 0.39 0.42 0.65 0.69 0.41

GDCOV 0.24 0.15 0.25 0.21 0.15 0.09 0.18 0.18
mRNA 0.24 0.15 0.21 0.30 0.09 0.19 0.24 0.20

GDCOV 0.65 0.79 0.82 0.82 0.85 0.88 0.94 0.82
miRNA 0.61 0.72 0.76 0.84 0.81 0.84 0.84 0.78

GDCOV 0.65 0.82 0.88 0.85 0.85 0.85 0.91 0.83

mi&mRNA 0.61 0.76 0.82 0.84 0.88 0.91 0.81 0.81

GDCOV 0.49 0.79 0.91 0.88 0.88 0.82 0.91 0.81
A-KPCA 0.61 0.74 0.82 0.84 0.79 0.85 0.94 0.80

GDCOV 0.24 0.15 0.42 0.24 0.15 0.31 0.27 0.25
NAML 0.24 0.15 0.27 0.15 0.18 0.27 0.23 0.21

Table 2. Four Different Types of Cancer: accuracy achieved by algorithms.
mi&mRNA stands for combining with the prescribed coefficient (0.7, 0.3). Num-
bers with boldface indicate the highest number achieved in each case. The advantage
of using multiple data sources are significant in this case. For GDCOV, the first

and the second row stands for GDCOVvar and GDCOVSPCA respectively.

Although GDCOV+NAML uses multiple data sources for feature selection, we
can observe from Table 2 that it does not perform well. This is understand-
able, since NAML assigns too few weight to miRNA profile and make GD-
COV+NAML almost equivalent to single source feature selection.

Study of Biological Relevance To evaluate the biological relevance of the
top genes in each list we check how many of them are cancer related. The results
can be found in Table 3. From the table we can observe that by using multiple
sources, averagely, GDCOV selects the most cancer related genes. Interestingly,
although SPCA selects many cancer related genes, accuracy results suggest that
these genes are actually of poor discriminative power, which says that these genes
may not be really relevant to the underlying process. On the other hand, the
genes selected by GDCOV using multiple data sources are cancer related and of
strong discriminative power as well. This suggests that these genes are possible
to be relevant to the underlying process from which the studied samples are gen-
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erated. In order to closely examine the biological relevance of the selected genes,
we performed a further study in which our biologist collaborators examined the
top 10 genes selected by GDCOVvar+mi&mRNA. It turned out that all 10 genes
are actually cancer related. Detailed information of the selected genes are shown
in Table 4. Among them, seven were already annotated to be related to cancer
in the IPA system. The other genes are found to be differentially expressed in
cancer cell lines and are supported by literature.

Algorithm 2 5 10 15 20 30 50 Ave

SPCA 1 4 5 7 9 11 16 7.57

SEPER 0 1 3 4 4 6 8 3.71

GDCOV 0 0 2 3 3 6 8 3.14
mRNA 0 0 2 3 4 6 8 3.29

GDCOV 2 4 5 8 10 14 22 9.29
miRNA 2 3 5 7 10 13 21 8.71

GDCOV 2 3 7 9 10 15 21 9.57

mi&mRNA 2 4 5 6 7 14 21 8.43

GDCOV 1 3 7 9 10 14 18 8.86
A-KPCA 2 2 5 6 9 14 22 8.57

GDCOV 0 0 2 4 5 6 11 4.00
NAML 0 0 2 5 5 6 12 4.29

Table 3. Numbers of known cancer related genes according to literature in the top 2,
5, 10, 15, 20, 30 and 50 genes provided by algorithms. Numbers with boldface indicate
the highest number achieved in each case. For GDCOV, the first row stands for

GDCOVvar and the second row stands for GDCOVSPCA.

Gene Name Functions and Biological Process Disease

LGALS4 sugar binding, cell adhesion colon cancer
LTF ubiquitin ligase complex prostate cancer
FUT6 integral to membrane,L-fucose catabolism colon cancer
FABP1 fatty acid metabolism,GABA-A receptor prostate cancer
GPX2 oxidoreductase,response to oxidative stress breast cancer
CNN1 calmodulin binding,actin filament binding melanoma
CDH17 transporter activity, calcium ion binding colon cancer
TM4SF3 signal transducer activity esophageal cancer
MYH11 calmodulin binding,actin binding lung cancer
KRT15 structural constituent of cytoskeleton breast cancer

Table 4. The top 10 genes selected by GDCOV+mi&mRNA. Genes with boldface
names are the ones directly detected by the IPA system as cancer related. In the table
genes are ordered according to their relevance scores from highest to lowest.

5 Conclusions

In this work, we investigated a novel problem arising from the need to select fea-
tures on one data source given multiple sources but without class labels. We first
proposed the concept of geometry-dependent covariance, we studied its proper-
ties and showed how to employ this covariance measure for multi-source feature
selection. We designed and conducted extensive experiments to objectively and
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systematically evaluate the proposed approaches in comparison with existing
representative single source feature selection methods. The affirmative results
demonstrate that using multi-source data can help improve feature selection of
the target source. As multi-source data become more common, learning and
feature selection using multi-source data will be in high demand in many real
applications. We can show that the approaches proposed in [6] are actually spe-
cial cases of the framework proposed in this paper, we are studying the general
properties of the algorithms generated from this framework. Besides feature se-
lection, it is also possible to use geometry-dependent covariance in discriminant
analysis and regression, which forms one line of our ongoing work.
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