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Abstract. This paper proposes a novel statistical procedure based on
permutation tests for extracting a subset of truly relevant variables from
multivariate importance rankings derived from tree-based supervised
learning methods. It shows also that the direct extension of the clas-
sical approach based on permutation tests for estimating false discovery
rates of univariate variable scoring procedures does not extend very well
to the case of multivariate tree-based importance measures.
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1 Introduction

In the context of supervised learning, feature selection may be decomposed
into two complementary subproblems. The first subproblem aims at identify-
ing among a given set of candidate input variables a maximal subset of so-called
relevant variables, i.e. variables which convey information about the target out-
put variable, in isolation or in conjunction with other relevant variables. The
second subproblem aims at identifying among a given set of variables, maxi-
mal subsets of so-called redundant variables, i.e. maximal subsets of variables
which conditionally to the other variables in that given set do not convey com-
plementary information about the target output variable. Unfortunately, when
the sole information available about the problem under consideration is limited
to a training sample of input-ouput pairs, it is not possible to exactly identify
maximal subsets of relevant or redundant inputs. Thus, any feature selection
algorithm will be at risk of either missing some sought features (false negatives)
or of erroneously selecting some truly non desired ones (false positives).

In this paper we consider the problem of identifying relevant features from
a (typically very large) set of candidate features. Among the different possible
selectivity /sensitivity compromizes, we aim at high selectivity, i.e. at identify-
ing subsets of relevant variables while maintaining the rate of false positives as
small as possible. This type of compromize is typically sought in the context of
‘biomarker discovery’ in bioinformatics, where input variables correspond for ex-
ample to RNA or protein expressions, or genetic polymorphisms, and where one
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seeks to identify a maximum number of them which truly provide information
about some biological condition (disease status, treatment response, etc.) for
further analysis and biological insight, while aiming at a very low false positive
rate, because of high costs of subsequent experiments (see e.g. [9]).

Univariate statistical hypothesis tests provide only a partial answer to this
question, because they can only identify variables that provide a significant
amount of information about the output variable in isolation from the other
inputs. When one seeks for interacting effects, one could resort to importance
measures provided by supervised learning methods, such as tree-based methods.
However, while these importance measures indeed allow to rank input variables
by decreasing order of relevance, they still lack of a statistically sound procedure
for selecting from their ranking a maximal set of variables while keeping the rate
of false positives below a specified level. In particular, subset selection based
on estimating generalization error rates by cross-validation generally does not
imply a low false positive rate.

One possible way to derive from tree-based variable importance measures a
procedure for selectively identifying relevant variables would be to mimic the
procedures that are used in the context of multiple hypothesis testing of uni-
variate statistics (see [5] for a review): the approach there is to rank the features
according to a relevance score derived from a (univariate) hypothesis test, and
then for each score threshold to estimate the rate of false positives (called the
false discovery rate, or FDR) among the variables that have a score greater than
the threshold. In this context, the FDR is usually estimated in a non paramet-
ric way by assessing the average scores derived when randomly permuting the
output variable values of the dataset.

In this paper, we first assess this FDR estimation approach when the rele-
vance scores are derived by tree-based (multivariate) importance measures. We
show empirically that this simple procedure typically overestimates in an unpre-
dictable way the real FDR and thus can lead to unreliable selections of relevant
subsets. We explain this by the fact that, contrary to the univariate case, the
tree-based importance scores of different variables are not independent of each
other. We then propose a novel alternative procedure for assessing the pres-
ence of irrelevant variables among a subset of variables top-ranked by tree-based
variable importance measures. For a given importance threshold, this procedure
first assumes that all and only those variables which have received an importance
higher than the threshold are truly relevant, and then estimates the probability
that any of the other variables would receive an importance higher than the
given threshold. Experiments suggest that the latter quantity (estimated by an
appropriately adapted permutation scheme) allows indeed to rather well iden-
tify an importance threshold below which the risk of having at least one false
positive rapidly increases. The procedure may thus serve to identify in a more
robust way than the FDR based approach a maximal subset of truly relevant
variables among those proposed by the importance scoring method.

The rest of the paper is organized as follows. Section 2 describes the particular
tree-based supervised learning method, the corresponding variable importance
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measure, and the synthetic datasets that we will use in the paper for our em-
pirical tests. Section 3 studies the classical permutation based FDR estimation
scheme on these synthetic datasets, highlighting its main properties when applied
to tree-based variable importances. Section 4 describes the proposed alternative
approach, its permutation based estimation procedure and the empirical results
obtained with the same synthetic datasets. Section 5 shows some results on a
real biological dataset. Finally, section 6 concludes and gives a few directions for
further research.

2 Tree-based ensemble learners and importance measure

In this paper, we focus on classification problems. We assume that we have at our
disposal a learning sample of N input-output pairs drawn from some unknown
probability distribution. The m input variables are denoted f;,i =1,...,m.

Tree-based methods. The basic idea of classification trees [3] is to recursively split
the learning sample with binary tests based each on one input variable trying to
reduce as much as possible the uncertainty about the output classification in the
resulting subsets of examples. Single classification trees are usually very much
improved by ensemble methods, which aggregate the predictions of several trees.
In our experiments, we will consider two tree-based ensemble methods based on
randomization, namely Random Forests [1] and Extra-Trees [6]. For these two
methods, we use the default parameter setting (i.e., the number of variables
randomly selected at each node fixed at the square root of m and no pruning)
and grow ensembles of 100 trees, unless specified otherwise.

Variable importance measure. Several variable importance measures have been
proposed in the literature for tree-based methods. In this paper, we consider a
measure based on information theory [12], which at each test node n computes
the total reduction of the class entropy due to the split, defined by:

I(n) = #S.Hc(S) — #S¢.Hc(S:) — #Sp.He(Sy), (1)

where S denotes the set of samples that reach node n, Sy (resp. S¢) denotes its
subset for which the test is true (resp. false), He(+) is the Shannon entropy of the
class frequencies in a subset, and # denotes the cardinality of a set of samples.
For a single tree, the overall importance v; of the ith variable is then computed
by summing the I values of all tree nodes where this variable is used to split.
For an ensemble of trees, the importances are averaged over all individual trees.

A property of this measure is that the sum of the importances of all variables
for a tree is equal to the total mutual information brought by the tree about
the classification variable, which in the case of unpruned trees is usually very
close to the initial total entropy of the classification variable [12]. The sum of the
importances, for a single tree as well as for an ensemble of trees, is thus usually
almost constant for a given problem. For presentation purpose, the importances
are often normalized for the different variables so that they sum up to 100%.
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Fach importance is thus the percentage of the total information brought by the
ensemble of trees that is due to this variable.

Artificial problems. To validate our methods in a context where relevant vari-
ables are perfectly known, we generated two artificial problems by adapting the
Matlab code originally used to produce the Madelon dataset for the NIPS 2003
feature selection challenge!. Both problems are binary classification problems
with continuous input variables.

— Dataset-3-20: This dataset is composed of 200 objects and 20 variables.
The first three are really relevant, while the others are pure Gaussian noise.
The problem is such that the third variable is only relevant in combination
with the first two.

— Dataset-50-1000: The second (larger) dataset is composed of 2000 objects
and 1000 variables. 50 variables are relevant, among which 6 have been di-
rectly used to define the output and 44 are linear combinations of these 6
variables (these latter are thus redundant given the first 6 ones). The re-
maining 950 irrelevant variables are pure Gaussian noise.

3 False discovery rate

We assume now that from the learning sample, we have computed with a tree-
based method the importance v; of each input variable f; (Vi = 1,...,m) and,
without loss of generality, we further assume that the features are ordered ac-
cording to their importances, i.e.

V1 > Vg > ... > Uy

For a given importance threshold v, we consider that all variables whose impor-
tance is greater than v are relevant and our concern is to estimate the expected
rate of truly irrelevant features among these variables, the so-called false discov-
ery rate (FDR) [11].

More formally, for a given importance threshold v, the FDR is defined as:

FDR(v) = E [gg;] : (2)

where S(v) is the number of variables considered relevant at threshold v and
F(v) is the number of those variables that are truly irrelevant. The expectation is
taken over different random learning samples drawn from the (usually unknown)
joint distribution of the variables (assuming that the algorithm is deterministic).

To select a subset of variables, one can then check the FDR for increasing
values of the threshold v and choose the minimum value of v such that FDR(v) <
«, where « is typically small and reflects the risk one is ready to accept in terms
of false positives when selecting the variables.

! http://www.clopinet.com/isabelle/Projects/NIPS2003/
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Table 1. Permutation algorithm for the estimation of the FDR

Compute variable importances from the original data and assume, without
loss of generality, that the variables are ordered according to their
importance v;, i.e. v1 > V2 > ... > Unp.

1. for t =1 to T (typically 1000) :
(a) Randomly permute the class labels.
(b) Compute variable importance values v}, j = 1,...,m, from the
permuted data.
(c) Compute R! = #{k: v, > v },Vi=1,...,m.

2. Then at v;, the FDR is estimated by
13, R

Iﬁ(vi):T ; fori=1,...,m

3.1 Estimation by random permutations

To estimate this FDR, we adopt the same approximations as in [8]. When the
number of features is large, one can approximate the expectation of the ratio by
the ratio of the expectations:

FDR(v) = E {ZE;’” ~ ELE@)] (3)

E[S(v)] can be simply approximated by the observed S(v), i.e. the number of
variables with an importance greater than v in the original data. E[F(v)] is
approximated by the expectation E[F(v)|Hy] over the null distribution Hy stat-
ing that all variables are truly irrelevant. In other words, E[F(v)] is taken as
the expected number of variables that get an importance greater than v when
none of them are truly relevant. We simulate this null hypothesis by applying
the same tree-based method that was used to produce the original importances
on datasets obtained from the original data by randomly permuting the class
labels. This permutation decorrelates the classification variable from the inputs,
making them all irrelevant, but keeps the dependencies that exist between the
features in the original data.

The algorithm of Table 1 describes the procedure that we use to estimate
the FDRs for all observed importance value thresholds in a learning sample.

3.2 Experiments on artificial data

We apply this procedure on the two artificial problems described in Section 2.
Since we perfectly know the relevant variables for these two problems, we are
also able to compute the observed FDR for a given subset of selected variables,
i.e. the proportion of irrelevant variables among those selected. Figure 1 plots the
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Fig. 1. Estimated and observed FDR for increasing rank, top on Dataset-3-20, bottom
on Dataset-50-1000, left with Extra-trees, right with Random Forests.

FDR estimated by the procedure of Table 1 and the observed FDR as a function
of the rank of the variables on the two artificial datasets with Extra-trees and
Random Forests. There is no important difference between the two methods.
In all cases, we observe that the estimated FDR overestimates the observed
FDR. On the small dataset, both methods are able to find the three relevant
variables (as illustrated by the fact that the observed FDR is equal to 0 until
rank 3). However, the curve of the estimated FDR that already starts increasing
for the third variable wrongly suggests that this variable is a false positive. On
the larger dataset, using a typical threshold of 0.05 on the estimated FDR leads
to the selection of 26 variables with Extra-trees and 25 variables with Random
Forests (all relevant in both cases), while the same threshold on the observed
FDR would lead to 28 variables with Extra-trees and 33 variables with Random
Forests, with 5% of irrelevant among them.

3.3 Discussion

The overestimation of the FDR by the procedure of Table 1 can be explained,
at least partially, by the fact that this procedure does not take into account the
dependence between the importance values for different variables?. Indeed, as
mentioned in Section 2, the sum of importances is roughly a constant for a given
problem?. In consequence, if a variable brings a lot of information about the
classification, there is much less left to be explained by the remaining variables,
whether they are relevant or not. Thus, if a relevant variable receives a high
importance, it potentially hides a less important but still relevant variable that
may consequently receive an importance v; which is small or even similar to that
of an irrelevant variable in the permuted data. In this case, our estimation of

2 Note that we are not talking here about the statistical dependence of the features
that induces a dependence of their importances, however they are computed, but
rather about the dependence between the importances that results from their joint
computation by a multivariate approach.

3 Note that this applies whether or not the importances are normalized.
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Fig. 2. Variable importance as a function of the rank with Extra-trees on Dataset-3-20,
from the original and the permuted data. In the latter case, importances are averaged
over the 1000 permutations.

E[F(v;)] from random permutations will be positively biased and thus our esti-
mate of the FDR will be too conservative. This phenomenon is clearly apparent
on the small artificial dataset, where the relevant variable f3 gets an importance
in the original ranking that is lower than the average importance obtained by
the most important variable in the permuted data (see Figure 2).

In [8], Listgarten and Heckerman observed a similar effect when trying to es-
timate the false discovery rate among the edges predicted by a Bayesian network
learning algorithm.

4 An alternative measure

In order to overcome this limitation of the FDR, we propose an alternative mea-
sure to be associated with each importance threshold v; that takes into account
the importances of the variables that are ranked above f;. For a given impor-
tance threshold v;, the procedure consists in computing the following conditional
probability, which we call the conditional error rate (CER):

)

CER(v;) = P(kpax VE > |H 7 Hi™), (4)

where H 113%1'71 denotes the hypothesis that all variables above f; in the original
ranking are relevant, H;~"™ is the hypothesis that f; and all the variables below
fi are irrelevant, and VkH (k =1,...,m) is the random variable denoting the
importance of fx under these two hypotheses. CER(v;) is thus the probability
that at least one irrelevant variable among m-i+1 gets an importance greater or
equal to v;, when these importances are computed under the assumption that
variables f1,..., f;_1 are all relevant.

This value can be interpreted as a measure of evidence against the hypothesis
that all variables above the threshold v; are relevant: a CER(v;) close to one
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Table 2. Permutation algorithm for the estimation of the CER

Compute variable importances from the original data and assume, without
loss of generality, that the variables are ordered according to their
importance v;, i.e. v1 > V2 > ... > Unp.

1. fori=1tom:
(a) for t =1 to T (typically 1000) :

— Keep the class labels and the values of the i — 1 first variables of
the original ranking fixed and randomly permute the values of
the remaining variables using the same permutation vector for
all variables

— Compute variable importance values vjv, j=1,...,m, from the
permuted data.

(b) Then at v;, the conditional probability (4) is estimated by:

#{t : max;—;,...;m vi > v;}
T

CER(vi) =

means that it is very likely to observe an irrelevant variable with an importance
above v; while a CER(v;) close to zero means that it is very unlikely that an
irrelevant variable could reach the threshold v;. The limit between relevant and
irrelevant variables in the ranking can then be determined by looking for the
minimal threshold v; such that CER(v;) < «, for some small value of o.

Since the CER tries to detect at least one false positive above the threshold,
we expect it to evolve much more abruptly than the FDR and thus that it will
indicate more clearly the risk of selecting some irrelevant variables in the ranking.

4.1 Estimation by random permutations

We propose to estimate the probabilities (4) by random permutations as well.
H};’i_l is approximated by keeping the class labels and the first i-1 variables
unchanged (which amounts at considering that variables 1 to i-1 are truly rel-
evant), while hypothesis H¢~™ is simulated by randomly permuting the values
of the variables i to m, that have an importance equal or smaller than v; in the
original ranking. To adhere as much as possible to the original joint distribu-
tion of the variables, they are furthermore permuted jointly, i.e. using the same
permutation vector. The resulting procedure is described in Table 2.

Because the importance of the variables 7 to m in the random permutations
are computed with the values of the variables 1 to i-1 being unchanged, these
importances should not suffer from the same bias as in the estimation of the FDR.
We thus expect that the algorithm of Table 2 will produce unbiased estimates
of the CER and thus be more adapted to highlight the true frontier between
relevant and irrelevant features than the procedure of Table 1 based on the
FDR.
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Fig. 3. CER and FDR for increasing rank, top on Dataset-3-20, bottom on Dataset-
50-1000, left with Extra-trees, right with Random Forests. The vertical line indicates
the rank beyond which the observed FDR is greater than zero and the position where
the observed CER switches from 0 to 1.

4.2 Experiments on artificial data

Figure 3 compares the CER as estimated by the procedure of Table 2 with the
FDR estimated by the procedure of Table 1 on both datasets and with the two
ensemble methods.

On the small dataset, the CER correctly starts increasing at the fourth vari-
able. It thus gives more chance than the FDR to the third variable to be selected.

On the larger dataset, the transition region between low and high CER is
quite well centered at the point where irrelevant variables start appearing in the
ranking (indicated by the vertical line). Setting a small threshold oo = 0.05 on the
CER and looking for the last variable f; in the ranking such that CER(v;) < «
leads to the selection of 22 variables with Extra-trees and 21 variables with
Random Forests. In both cases, all the selected variables are truly relevant but
the selection remains however quite conservative (with Extra-trees, the first 27
variables are relevant and with Random forests, the first 30). This is because
the transition region between low and high CER is quite large (especially for
Random Forests).

4.3 Link with FWER based univariate procedures

The CER has a nice interpretation when the importances are actually derived
from univariate statistics and a variable is, by definition, irrelevant when it
satisfies the null hypothesis Hy of the corresponding statistical test (e.g. v; is
the t-statistic associated to variable ¢). Indeed, in this case, importances v; are
computed independently of each other and probability (4) can thus be rewritten
as follows:

P( max Vi >uv|Hy " HI7™) = P( max Vi > |HI™™)
k=1,...,m k=i,...,m

— P(kEI}aX VE > wuHIT™),  (5)

yeeey M
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where H]~™ is the hypothesis that all variables satisfy the null hypothesis Hy.
Expression (5) corresponds precisely to the definition of Westfall and Young’s
stepdown maxT adjusted p-values (see [13,5]). The direct application of the pro-
cedure of Table 2 in this case thus produces estimates of these adjusted p-values
by random permutations. Under some conditions about the distribution of the
statistic, Westfall and Young showed that selecting all variables such that their
adjusted p-values is lower than some threshold « guarantees that the family-wise
error rate, or FWER (i.e. the probability to include at least one false positive
among the selected variables) is lower than «. In our context, however, given the
strong dependency between the importances that are computed by tree-based
methods, it is not clear whether this guarantee still applies.

5 Experiments on a real dataset

To highlight the behaviour of both measures on a real problem, we run exper-
iments on a biological dataset. The goal of the study [4] is the identification of
the genes with altered expression in the livers of knock-out mice compared to
control mice. The dataset* contains 5548 gene expression measurements for 16
mice divided into two classes: 8 wild-type mice and 8 mice whose Apo Al gene
was knocked out. This dataset was also used in [5] to compare several statistical
procedures for controlling multiple testing issues for univariate statistical tests.

Although the truly relevant variables are unknown, in [4], eight variables were
identified as differentially expressed using univariate statistical tests and their
relevance was experimentally confirmed. We expect that multivariate approaches
will at least highlight these eight variables and we will thus check their presence
in the rankings below. Note however that this does not mean that only those
eight variables are relevant. All additional variables found by our multivariate
procedures certainly deserve to be checked experimentally.

On this dataset, we apply the Extra-trees algorithm with four different set-
tings of its parameters, i.e. the number K of variables that are randomly selected
at each node and the number T" of trees in the ensemble: (K = /m,T = 100),
(K = /m,T = 1000), (K = m,T = 100), and (K = m,T = 1000). The esti-
mated FDR and CER as a function of the ranking are plotted in Figure 4 in all
four cases.

Several conclusions can be drawn from these plots. First, using K = y/m and
T = 100 does not bring interesting results on this dataset. The method is un-
able to distinguish truly relevant variables from randomly permuted ones, which
translates into a high value of both the FDR and the CER. Simply increasing
the number of ensemble terms already gives much better results in terms of the
number of variables that appear as relevant. A threshold of 0.05 on the CER
selects a subset of 7 variables and a threshold of 0.05 on the FDR gives 10
variables that actually contains the 8 variables identified in [4]. Only 3 of them
were present in the top 10 variables with 7" = 100, confirming that the ranking

4 http://www.stat.berkeley.edu/users/terry/zarray/Html/apodata.html
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Fig. 4. CER and FDR for increasing variable importance rank (Extra-Trees). Top left
with (K = y/m,T = 100), top right with (K = /m,T = 1000). Bottom left with
(K =m,T = 100), bottom right with (K = m,T = 1000).

is indeed improved by increasing T'. It is interesting to note that, on the other
hand, increasing T' from 100 to 1000 does not affect the error rate (which is
equal to 25% in both cases, as estimated by leave-one-out), meaning that here
accuracy would not be a relevant criterion to assess the quality of the ranking.
The high improvement of the FDR and CER values when T is increased is here
a consequence of the very high ratio between the number of variables and the
number of examples that makes the random trees, and thus the corresponding
rankings, highly unstable and thus requires to average a very large number of
trees for stabilization.

When K is increased to its maximum value (i.e. randomization is reduced),
the CER is also very much improved, even with 7" = 100. It shows an abrupt
change between the 11th and the 12th variables, suggesting that about 11 vari-
ables are relevant. As a confirmation, the 8 variables identified in [4] are again
among these 11 ones. On the other hand, the estimated FDR seems to be highly
overestimated in this case. We explain this by the fact that increasing K in
Extra-trees makes the model less random and thus increases the importance of
the top ranked variables relatively to the low ranked ones, thus emphasizing the
phenomenon highlighted in Section 3.3 and responsible for the overestimation of
the FDR.

6 Conclusions

In this paper, we have proposed and evaluated two statistical procedures to ex-
tract a subset of truly relevant variables from multivariate importance rankings
obtained from tree-based supervised learning methods. The first one is a direct
application of FDR based procedures used in the context of univariate statistics.
Unfortunately, this procedure can rather strongly overestimate the real FDR
and can thus potentially lead to overly conservative selections of relevant sub-
sets. We then have proposed an alternative procedure based on the estimation
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of a conditional error rate, whose estimation by random permutations takes into
account the dependencies between the importances and thus leads to more ro-
bust estimates. Although further experiments are needed to better validate this
procedure, we believe that our results on artificial and real problems are already
quite encouraging.

One drawback of the CER procedure is that it is very computationally de-
manding: 7' x m models are needed for the estimation of the CER for all possible
importance thresholds, where m is the number of variables and 7" is the number
of random permutations. The computing times can however be decreased, e.g.
by stopping the procedure when the estimated probability is greater than some
threshold, as we are typically only interested in small values of the CER.

In terms of future works, it would be interesting to investigate better pro-
cedures to estimate the FDR. As noted in Section 3.3, one of the reasons of
the overestimation of the FDR is the overestimation of E[F(v)] that results
from the simultaneous permutation of all features. We have tried to adopt the
same sequential approach for estimating this term as for the CER, i.e. only per-
muting the m-i+1 last variables and estimate F[F(v;)] as the expected number
of permuted variables whose importance exceeds threshold v;. This yields bet-
ter estimates of the FDR for small ¢ but when ¢ grows to m, the number of
permuted variables, and thus the FDR, decreases to 0. Further investigations
are thus necessary to really assess the conditions of validity of this procedure.
Several improved permutation procedures have also been proposed to better es-
timate the FDR in the context of univariate tests (e.g. [14]). The extension of
these approaches to our multivariate context is also an interesting future work
direction.

Along a different line, Stoppiglia et al. [10] have proposed a related approach
for feature selection that introduces a random variable among the input vari-
ables and exploits its rank among the other variables to determine the relevance
threshold. Although they developed this idea in the context of linear models
only (where the distribution of the rank of the random feature can be computed
analytically), this approach could be straighforwardly extended to tree based
ranking. Its comparison with our approach will be the subject of future work.

Another important direction of investigation is of course the application of
these procedures in the context of other multivariate importance measures de-
rived from machine learning algorithms. In the context of tree-based methods,
our analysis should carry over straightforwardly to regression measures based
on variance reduction [3]. It would be interesting also to consider other impor-
tance measures such as, for example, Breiman’s permutation based importance
measure [2].

On the other hand, we have already carried out some preliminary experiments
with variable importances derived from the weights of linear SVM models [7].
One problem however with these importances is that their scale of measurement
is dependent on one hand of the range of variation of the variables (although this
can be circumvented by a prior normalization of the features) and on the other
hand on the specific margin that can be achieved given the features (since the
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margin is proportional to the norm of the weight vector). This scaling instability
suggests that some further caution should be taken when comparing the original
importances with importances derived from randomly permuted data as required
in our procedure.
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