
Supply chain management by means of
FLM-rules

Nicolas Le Normand, Julien Boissière, Nicolas Méger, Lionel Valet

LISTIC Laboratory - Polytech’Savoie
Université de Savoie

B.P. 80439 — F-74944 Annecy-Le-Vieux, France.
{Nicolas.Le-Normand|Julien.Boissiere|Nicolas.Meger|Lionel.Valet}@univ-savoie.fr

Abstract. Efficient supply chain management is nowadays considered
as a major source of competitiveness. In this paper, we aim at man-
aging a supply chain by forecasting problems that might arise in the
future. To achieve this goal, we propose to model our supply chain using
FLM − rules and to use such a model for forecasting problems. This
approach is tested using synthesized data that originate from a supply
chain simulation. Results are encouraging as 93% of the problems are
predicted.

Key words: episode rules, FLM-rules, forecast problems, supply chain.

1 Introduction

Information technology tools such as ERPs (Enterprise Resource Planning) al-
low firms to gather huge quantities of data that originate from several business
processes. For example, when dealing with supply chains, dataflows about in-
ventories levels, orders, and deliveries can be collected for different facilities over
large periods of time. If a model is inducted from this data, then it becomes
possible to forecast problems that may arise in the future. Symeonidis et al [1]
uses such an approach to enable an agent to anticipate bidding strategy in a sup-
ply chain. See also Chen et al [2] for a more general framework. In this paper,
we propose to forecast problems in supply chains by handling the whole data
as a single time stamped event sequence. As operations strongly relate to each
other, accumulated data can be described using temporal dependencies, such
as episodes rules, as defined and proposed in [3]. Finding episodes rules may
provide interesting insight to experts in various domains. In particular, it has
been shown to be very useful for alarm log analysis in the context of the TASA
project [4]. As episodes rules extraction gives many rules, it has been proposed
in [4] to browse them interactively so that the user focuses on episodes rules that
are interesting with respect to his/her knowledge. In this paper, we intend to
decrease the number of episode rules by selecting conclusions. We also aim at
bringing additional temporal information by extracting FLM − rules [5]. This
information will be further used for calculating forecast windows. Furthermore,
FLM−rules can be extracted under a maximum gap constraint (maximum time

interval between each event type occurrence), which allows us to consider rules
that make sense with respect to the context. More details about FLM − rules
are to be found in Section 2. Once extracted, FLM − rules can be used as a
model for forecasting problems. Section 3 details our forecast method as well as
its evaluation principle. This evaluation is done in Section 4 using two synthe-
sized datasets: a learning one and test one. Finally, Section 5 draws conclusions
and perspectives.

2 FLM-rules

Let E be a set of event types. An event is then defined as a pair (e, t) where
e ∈ E is an event type and t is an integer, i.e. a timestamp that indicates the
occurrence time of e. An event sequence S is a triple (s, Ts, Te), where s is an or-
dered sequence of events 〈(e1, t1), (e2, t2), ..., (en, tn)〉 such that ∀i ∈ {1, . . . , n},
ei ∈ E and such that ∀i ∈ {1, . . . , n−1}, Ts ≤ ti ≤ ti+1 ≤ Te. Ts and Te are inte-
gers that respectively denote the starting time and the ending time of the event
sequence. Let us consider the following toy exampleX = (Seq, 0, 456) with Seq =
〈(A, 45), (D, 79) , (B, 82), (C, 101), (A, 120), (B , 150), (C, 176), (A, 200), (B, 420)〉.
X starts at time unit 0 and ends at time unit 456. Events types A and B occur
three times, event type C occurs twice and event type D only occurs once. This
toy example will be used all over this section. From such an event sequence,
one can extract episodes rules. Those rules rely on episodes. We here consider
a specific class of episodes, namely the serial episodes. A serial episode is a
tuple α such that α = 〈e1, e2, . . . , ek〉 with ei ∈ E for all i ∈ {1, . . . , k}. In
this paper, we will use the notation e1 → e2 → ... → ek to denote the serial
episode 〈e1, e2, ..., ek〉 where ’→’ may be read as ’followed by’. For example, a
serial episode is A → B → C. This can be read as event type A is observed,
then, sometimes later, event type B occurs and, finally, event type C is ob-
served later on. For simplicity reasons, we will now refer to episodes instead of
referring to serial episodes. The suffix of an episode is the last event type of
the episode and the other events types are termed as the prefix. For example,
suffix(A → B → C) = C and prefix(A → B → C) = A → B. When looking
for occurrences of episodes, a maximum time gap constraint can be set between
each symbol occurrence for reducing the search space and for selecting occur-
rences that make sense with respect to the application. This constraint is termed
as gapmax. Let α and β be episodes such that prefix(β) = α. An episode rule is
the expression α⇒ suffix(β). For example, if we consider episode α = A→ B
and episode β = A → B → C, then we can generate episode rule A → B ⇒ C.
This can be read as ”if event A occurs, and if, sometimes later, event B also
occurs, then, event C might occur later on”. Two measures can be linked to
episode rules :

– the support measure, i.e. the number of occurrences of an episode rule
throughout the whole event sequence,

– the confidence measure, i.e. the observed conditional probability of having
the conclusion of an episode rule knowing that the premises already occurred.

Those measures rely on the definition of occurrences. We here use minimal occur-
rences as formally defined in [3]. Basically, a minimal occurrence of an episode
α is a time interval [tos, toe] such that the first event type of α occurs at time
tos and such that suffix(α) occurs at time toe. The other event types of α have
to occur in between. On the top of that, [tos, toe] is a minimal occurrence if, and
only if, there is no other occurrence of α [t′os, t

′
oe] such that [t′os, t

′
oe] ⊂ [tos, toe].

That is, a minimal occurrence of a given episode can not spread over another
occurrence of the same episode. Back to our example, the minimal occurrences of
A→ B in X are mo(A→ B,X) = {[45, 82], [120, 150], [200, 420]}. On the other
hand, intervals [45, 150], [45, 420], and [120, 420] are not minimal occurrences of
A→ B as they spread over intervals that already contain A→ B.

Support and confidence measures are used for selecting episode rules accord-
ing to a minimum support threshold σ and a minimum confidence threshold γ.
That is, we can restrict our search to frequent episodes rule, i.e. episode rules
whose support is above σ, and/or to confident episode rules, i.e episode rules
whose confidence is above γ. Algorithms (e.g. [4], [5]) that aim at extracting
episode rules all rely on the anti-monotonicity of the support measure for prun-
ing the search space. Looking at our example, if we consider the episode rule
A→ B ⇒ C, we can observe that, using minimal occurrences, its premise occurs
three times in the event sequence while event type C only occurs twice after an
occurrence of episode A→ B . Thus, the support of episode rule A→ B ⇒ C is
2 and its confidence is 2/3 = 66, 67%. Those measures can be refined by redefin-
ing them for all possible widths, i.e. the time span of all possible time windows
that sart at the occurrence date of the first event type of episode occurrences.
Therefore, for a given episode rule, it is possible to compute its support and its
confidence with respect to various window widths and thus to its occurrences
widths. FLM − rules are frequent and confident episode rules having a con-
fidence local maximum value lm at given width wm such that there exists a
greater width for which confidence value is lesser that lm− (dr× lm/100), with
dr a decrease rate set by the user. The higher is dr decrease rate, the higher
is lm compared to confidence values defined for greater widths. wm is said to
be the optimal window size of the episode rule. Thus, each FLM − rule comes
along with its optimal window size. For formal definitions, we refer the reader
to [5]. For example, if σ = 2, γ = 100% and dr = 10%, then rule A→ B ⇒ C is
selected and it comes along with an optimal window size of 56 minutes. For this
optimal window size, its confidence is 100% and its support is 2. This can be
interpreted as follows : ”this rule is very confident for a width of 56 minutes. For
this width, its confidence is 100% and it is observed twice in sequence X. Its con-
fidence, for other widths, is below 100% or, if there are other windows for which
confidence is greater or equal to 100% and for which the rule is frequent, then
those window size are above 56 minutes. There exist a width above 56 minutes
such that its confidence is lower than 100−(10×100/100) = 90%”. Indeed, if we
consider a width of 220 times units, then, in X, we can consider all occurrences
of this episode rules. In this case, the support for the episode A→ B rises up to
3. On the other hand, the confidence falls down to 2/3 = 66, 67%. Due to space

limitations, we did not formally define all those concepts. Once again, we refer
the reader to [5] for more formal definitions.

3 Forecasting problems

This section first details our forecast method in Subsection 3.1 before expounding
its evaluation principle in Subsection 3.2.

3.1 Forecast method

We propose to describe the supply chain behavior by extracting FLM −
rules from a learning dataset. We will use this model for forecasting future
problems. First, episodes rules are filtered on conclusions that relate to user-
selected problem classes. Then, for each problem class, we aim at defining a
forecast window. To do so, for each FLM − rule r concluding on a user-specified
problem class, we establish an observation window]tr, t0] such that tr + k ×
gapmax = t0 where t0 is the date at which our forecasting method is triggered,
gapmax is the maximum gap constraint and k is the number of event types of
the premise. Let Tsr be the set of the occurrence dates of the first event of the
occurrences of premisses of the rule r that occur in]tr, t0]. We select tsr

x ∈ Tsr

such that @ tsr
y ∈ Tsr with tsr

x 6= tsr
y and tsr

y > tsr
x and such that no conclusion

of rule r appear in]tsr
x, t0]. Then the conclusion of rule r should appear at

tcr = tsr
x + wm with tcr > t0 and wm the optimal window size of rule r. Let

TcC = {tcr | the conclusion of rule r belongs to class C}. Let [tfsC , tfeC] be
the forecast window associated to class C. Then, tfsC = min(TC

c) and tfeC =
max(TC

c). In other words, for each problem class, and if there are problems that
are about to occur, we generate a warning that comes along with a forecast
window. Figure 1 summarizes this method for problems of class C.

3.2 Evaluation principle

We intend to evaluate our forecast method by using it at different dates t0
on a test dataset. The main assumption is that the system, i.e. the supply chain
in our case, exactly behaves the same in both the learning dataset and the test
dataset. Two cases are to be considered:

– Case 1: our forecast method foresees a problem class C in the supply chain.
It thus gives the forecast window [tfsC , tfeC]. In this case, we will check
whether problems belonging to C occur in the forecast window that has
been given.

– Case 2: no warning is provided by the system. In this case, as the system
foresees nothing, we have no window to check. Nevertheless, it is necessary
to make sure that there are no problem later on in the supply chain. To

do this, we check whether problems occur in]t0, t0 + gapmax]. Indeed, the
last event type of the premise of rule can be detected at t0. Therefore, the
conclusion, as rules were extracted under a maximum gap constraint, can
appear until t0 + gapmax.

4 Experimental evaluation

In this section, we first give a brief overview of the supply chain simulation (cf.
Subsection 4.1). Then, in Subsection 4.2, we discuss the various parameters that
we set for extracting for FLM − rules before describing extraction results in
Subsection 4.3. Finally, Subsection 4.4 goes into evaluation details.

4.1 Supply chain simulation

The simulated supply chain is a distribution one (divergent tree). It is com-
posed of a warehouse D0 which delivers three distribution facilities denoted
D1, D2, D3. Finally, nine aggregated customers are connected to the distribution
facilities. Each of them represents a consumers family that basically purchase the
same things. The replenishment policies used at each facility are reorder point
policies: when the inventory of one product drops below a certain level (the
reorder point), a fixed quantity is ordered to the supplier. This supply chain
distributes ten different products denoted pi with i ∈ [1 . . . 10]. End customers
demands can be seen, for each customer as: the interval between demands, which
follows a Normal distribution, and the demand quantity for each product which
follows a Poisson distribution. There are no production delays in the system, but
transportation ones: one to supply the warehouse from an external source, and
one from the warehouse to each of the distribution facilities. Several indicators
are used along this supply chain. First there are inventories levels for each prod-
uct at each facility. We note invi,j,k, the inventory level k of product i at facility
j such that j ∈ [0 . . . 3] and k ∈ {′low′,′medium′,′ large′}. Inventories are low
when the level is below the safety stock, medium if below the reorder point and
large if over. Then, every placed customer order generates a satisfactory factor
denoted satb,l which reflects the satisfaction level l of the customer b according
to the expected and effective delivery dates such that l ∈ {′ontime′,′ late′} and
b ∈ [1 . . . 9]. If the facility owns enough inventory, or if the demand can be ful-
filled within 2 days, then the customer demand is satisfied (′ontime′), while, if
he must wait longer, he is unsatisfied (′late′). In any case, orders are delivered.
In order to efficiently manage our supply chain, we will focus on the satisfac-
tion of end customers. Indeed, it is interesting for decision-makers to know in
advance the customers who might be unsatisfied in the future in order to limit
the number of unsatisfied customers. Thus, each event type satb,l is considered
as a problem class that has to be forecasted along with its forecast window.

This supply chain was modeled using a specialized software for industrial flow
simulation. We generated two datasets: the learning one and the test one. Each

C

A

F

C

window
Forecast

B

B

A D C

Observation window

t0

k × gapmax

t

wm of A→ B ⇒ C

wm of A→ D ⇒ C

wm of F → B ⇒ C

tfsC tfeC

Fig. 1. Forecasting problem class C.

dataset is a one year simulation. Global demand is quite regular throughout the
year though three customers have seasonal demand, i.e. they ask for twice as
much product during the summer. This seasonality generates interesting fluctu-
ations in the supply chain. The basic time unit of the system is the hour. This
means that demands may occur every hour. This time unit is important as it
points out the dynamics of the system. The simulation generates about 300,000
events a year. Event types are defined over a 250 symbols alphabet. The three
aggregated customers who realize many orders in our simulation are customers 1
to 3 and parameters are set to be quite often unsatisfied. Aggregated customers
4 to 9 realize less orders and are always satisfied in the simulation.

4.2 Extraction parameters

The choice of the various parameters is done according to several experiments.
First, we set the minimum confidence threshold to 0.9 as we want quite strong
rules. Next, according to the our functional expert, we set gapmax to 10, 000
minutes. Then, in order to have enough rules for all dissatisfied customers, we set
the minimum support threshold to 100 which is a very low support. Furthermore,
so as to obtain quite generic rules and to avoid over-fitting, we set the maximum
number of symbols per rule to 3. It is also useful for making extraction tasks
tractable as the minimum support is very low. Last parameter is the decrease
rate. The higher is the decrease rate, the lower is the value of the confidence for
at least one width that is larger than the optimal window size. In our case, we
had to set this value to 0 because we were not able to extract FLM−rules with
decrease rates higher than 2%. And if we set the decrease rate to 2%, then we
have only 12 rules. This means that confidence generally increases up to a given
level of confidence that corresponds to a width such that the rule is frequent
and confident enough and such that the confidence for the following width is
the same. Besides, we observed that, at most, the confidence increases no more
than 4% (average for all customers related rules) and that the support goes up
no more than 8% (average for all customers related rules) for widths that are
larger than the optimal window size. In the end, this also justifies the use of

the optimal window sizes with a decrease rate set to 0% for establishing forecast
windows.

4.3 Extraction results

We extracted rules from our dataset using the Winminer prototype [5] on
a Suse Linux platform (2.6.22.5-31-default i686 kernel, 512 MB RAM, Athlon
64 3000+ 1.8 GHz). Within nine hours, around 3, 000, 000 FLM − rules are
extracted. FLM − rules are numerous in this case because (1) support is very
low and (2), by setting the decrease rate to O%, we extract as many FLM-rules
as standard episode rules. Once filtered with respect to dissatisfied customers,
the number of FLM − rules falls down to 37, 282. The distribution of these
rules matches the simulation frequency of dissatisfaction of the three customers
that can suffer delivery problems. Thus we have 36, 877 rules for customer 1,
226 rules for customer 2 and 179 rules for customer 3. This demonstrates that
we had to set a quite low support, otherwise, it would not have been possible
to get rules for customer 1 and customer 2. About the optimal windows size,
it is also necessary to separately consider the various dissatisfied customers: for
customer 1, the average optimal window size lm is 1070 minutes, for the customer
2 average lm is 6391 minutes and for customer 3 average lm is 2434 minutes.
This also matches our simulation as customers 1 and 3 generally place order
more frequently than customer 2.

4.4 Evaluation results

We carried out a series of measurements for different dates t0 using our test
data set. We made one forecast per week, i.e. 52 forecasts. We then evaluated our
forecasts as explained in Subsection 3.1. Only three customers present dissatis-
factions in our sequence. It is thus a question of foreseeing correctly at which
moment they are going to be unsatisfied. Results of the evaluation are given by
Figure 2. For each customer b, we denote by l̂ate, the number of forecasts stating
that customer b is about to be unsatisfied, i.e. rules ending on satb,late are likely
to occur. ôntime denotes the number of forecasts that foresee no problem. As
you can see, for customer 1, we are able to predict 90% of the problems with-
out having false alarms though this type of customer is always dissatisfied. For
customer 2, we predicted 88% of the problems, but this time, we have 4 false
alarms. And finally, for customer 3, we did predict 96% of the problems and
we just have 2 false alarms. About the forecast windows, average starting and
ending dates are: to + 6 hours and t0 + 54 hours for customer 1, t0 + 16 hours
and t0 + 208 hours for customer 2, t0 + 15 hours and t0 + 87 hours for customer
3. Thus, end-users are given enough time to trigger corrective actions in order
to deal with those future problems. Finally, if we average all the data for all
customers, we are able to forecast 93% of the problems.

Fig. 2. Evaluation results.

5 Conclusions and perspectives

In this paper, we propose to rely on FLM−rules for building a model of a system
that can be further used for forecasting events and their corresponding forecast
windows. We tested our forecast method by simulating a supply chain. Results
are encouraging. Indeed, we are able to predict 93% of the problems in the supply
chain without having more than 4 false alarms (out of 52 predictions). This also
shows that local patterns can be used for both modelling and forecasting, without
asking the user to browse huge collections of patterns. Future work directions
include the generation of a mathematical model of the system from episode rules.

References

1. A. L. Symeonidis, D. D. Kehagias, and P. A. Mitkas. Intelligent policy recommen-
dations on enterprise resource planning by the use of agent technology and data
mining techniques. Expert Systems with Applications, 25:589–602, 2003.

2. M.-C. Chen, C.-L. Huang, K.-Y. Chen, and H.-P. Wu. Aggregation of orders in
distribution centers using data mining. Expert Systems with Applications, pages
453–460, 2005.

3. H. Mannila, H. Toivonen, and A. Verkamo. Discovery of frequent episodes in event
sequences. Data mining and Knowledge Discovery, pages 259–298, 1997.

4. M. Klemettinen, H. Mannila, and H. Toivonen. Interactive exploration of interesting
findings in the telecommunication network alarm sequence analyser tasa. Informa-
tion and Software Technology, 1999.

5. N. Meger and C. Rigotti. Constraint-based mining of episodes rules and optimal
window sizes. Principle and practice of Knowledge Discovery in Databases, pages
313–324, 2004.

