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Abstract. This paper proposes an automated modelling algorithm that,based on
a observations, creates a qualitative conceptual model that provides a causal ex-
planation of system behaviour. The algorithm is envisionedto become a integral
part of our model building methodology, and is meant to supports model builders.

1 Introduction

Within the NaturNet-Redime EU project, ecologists made qualitative models about river
restoration ecology issues in several regions. A modellingmethodology was developed
to support these domain experts [1]. This structured approach describes how the expert’s
conceptual ideas can be formalised, and gradually refined into a complete model imple-
mentation. Modellers were able to follow the methodology, however frequent support
from the modelling experts was required to overcome modelling issues.

This paper proposes an automatic modelling algorithm that learns qualitative con-
ceptual models based on (a qualitative description of) observations of the system’s be-
haviour. The algorithm is envisioned to be an integral part of the modelling methodol-
ogy. As such, it takes some of the intermediate modelling results created in the mod-
elling framework as input. The result is a qualitative conceptual model that provides a
causal explanationof the system’s behaviour.

Besides supporting modellers in articulating their conceptual ideas, there is the
question whether it is possible to automatically discover causal explanations of system
behaviour. Several researchers are trying to learn processmodels based on the behaviour
of the system [2, 3], however their approaches typically learn differential equations and
focus more onnumerical accuracy. In contrast, our approach attempts to learncausal
explanations, such as those found in e.g. Qualitative Process Theory (QPT) [4].

2 Garp3

The qualitative modelling and simulation workbench Garp3 (http://www.garp3.org) al-
lows modellers to build conceptual models about systems. These models particularly fo-
cus on the cause-effect relationships (influencesandproportionalities). Figure 1 shows a
representation of a population with the quantitiesNumber ofandBirth and their quan-
tity spaces. Quantity spaces indicate the possible magnitude (e.g.Mv(Number of) ∈
{Zero, Small, Medium, Large}) and derivative values (Dv(Q1) ∈ {−, 0, +}) of each
quantity. We useMs(Q1) andDs(Q1) to refer to magnitude and derivative signs.
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Fig. 1. Model fragment modelling the birth process.

The figure shows a positive influence (Birth
I+
→ Number of). This influence will

increaseDv(Number of) whenMs(Birth) = +, decrease it whenMs(Q1) = − (which
is impossible), and have no effect whenMs(Q1) = 0 (i.e. the size of the population
will increase if there is a birth rate). For a negative influence it would be vice versa. In
effect, influences determine derivatives based on magnitudes.

The positive proportionality (Number of
P+
→ Birth) will increaseDv(Birth) when

Ds(Number of) = +, have no effect whenDs(Number of) = 0, and decrease when
Ds(Number of) < 0 (i.e. the derivative of population size is determined by thederiva-
tive of the birth rate). For a negative proportionality, it is vice versa. Since proportional-
ities determine derivatives based on derivatives, they canbe said to propagate changes.

Other ingredients in Garp3 are operators, inequalities, value assignments and cor-
respondences. Operators (+ and -) calculate the magnitude value of quantities (e.g.
Q1 − Q2 = Q3, to indicateMv(Q1) − Mv(Q2) = Mv(Q3)). Inequalities have mul-
tiple uses, e.g.Mv(Q1) > Mv(Q2). Value assignments indicate that a quantity has a
certain value (Mv(Q1) = Q1(Plus)). Finally, correspondences indicate that the current
value of one quantity can be inferred from the current value of another quantity. There

are quantity correspondences (Q1

Qqs

↔ Q2) and value correspondences (Q1(Plus)
Qv

→
Q2(Plus)), which can both be either directed or undirected. The valuecorrespondence
indicates that ifMv(Q1) = Q1(Plus), Mv(Q2) = Q2(Plus) (see Figure 1). If the
value correspondence is bidirectional, the reverse inference is also possible. Quantity
correspondences can be considered a set of value correspondences between each con-
secutive pair of the values of both quantities. There are also inverse quantity space

correspondences (Q1

Q−1

qs

↔ Q2) that indicate that the first value inQ1 corresponds to the
last value inQ2, the second to the one before last, etc.

Garp3 models generate non-numerical simulations. These result in a state graph that
represents how the initial situation changes (via the transitions) into other situations
due to changes in quantity values (and inequalities betweenquantities). There are often
multiple solutions, i.e. there can be branching in the stategraph due to ambiguity. For
example when there are multiple possible derivative valuesfor a quantity.

3 Algorithm Design

3.1 Algorithm Input

The algorithm takes a qualitative description of a set of observations as input (Figure 2).
The first input is ascenario(Figure 2(a)); the observed initial state of the system. The



second input describes the observed possible behaviours the system can exhibit given
the scenario (Figure 2(b)). This second input is represented as a state graph, in which
each state represents a system state (with particular magnitude and derivative values for
each quantity), and the transitions represent the possibleways states can change into
other states.
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(b) Simulation state graph and value history.

Fig. 2. The input of the automatic model building algorithm.

3.2 Desired Algorithm Output

The desired output of the algorithm is a qualitative causal model that explains the input
observations. That is, the contents of the model should be such that simulating the model
in Garp3 should reconstruct the behaviour (i.e. the state graph) that was provided as
input. Particularly important are the causal dependenciesrepresented in the model (e.g.
as in Figure 1).

3.3 Key Algorithm Ideas

Covering and Pruning One key idea of the algorithm is to first generate those causal
relations (proportionalities and influences) that ’cover’the desired output behaviour.
That is, simulating the model with those should generate a simulation state graph
that is equal or a superset of the desired state graph. The state graph is then pruned
(i.e. the spurious states are removed) using correspondences and inequalities.

Causal Abstraction In many cases the precise causal ordering of quantities cannot
be determined as only a correlation between quantities is known. As a result, the
number of possible models grows exponentially in the numberof quantities. To
reduce the number of possible models, the possible causal orderings are represented
as abstracted representations.

Actuator Patterns The causes of change within qualitative models are almost always
influences. These influences model processes that affect thesystem. We have in-
vestigated several well-established models to search for patterns that include influ-
ences. We call these actuator patterns, since they serve as actuators of the system.



Representation Guided Learning The goal of the algorithm is to create a qualitative
model. The algorithm uses the semantics of the qualitative model language to learn
the representation.

4 Automated Model Building Algorithm

An overview of our automated model building algorithm is shown in Figure 3. The
rounded squares represent functions, while the squares represent results. The algorithm
starts with providing the input to the ’Find Naive Dependencies’ function. The flow of
the algorithm is clockwise from this function. Some of the intermediate results are used
in other functions. The ’Check Concistency’ function is used in two other functions, but
is not one of the steps in the algorithm.
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Fig. 3. Overview of the automatic model building algorithm.

4.1 Check Consistency

The check consistency function determines whether relations (generated by the algo-
rithm) are consistent with the input observations. That is,whether the relations are
consistent with all magnitude and derivative values of all quantities in each state of the
input state graph.

The input of the function is a set of states consisting of the system structure, the
quantities, the magnitude and derivative values in those states, and a set of (causal)
relations. The function verifies the magnitudes and derivatives of the quantities based
on the given values and the relations. This is done by two types of reasoning. Firstly,
influence resolution which determines the derivatives of quantities based on the propor-
tionalities and influences. And secondly, inequality reasoning to check for consistency.

A set of relations is considered consistent if they are consistent with all the states
in the input state graph. That is, the derived values are equal to the given values in the
state. Otherwise, the relations are considered inconsistent.

4.2 Find Naive Dependencies

The ’Find Naive Dependencies’ function determines each possible single causal relation
that is consistent with all input observations. This set of naive dependencies is used to



determine the plausibility of patterns in the next steps in the algorithm. The function
uses ’Check Consistency’ to check the consistency of singleproportionality, influence
and correspondence relations between each possible quantity pair.

The result a set of (causal) relations of which some are true (e.g. Land with veg-

atation
P+
→ Biodiversity), and some are false (Biodiversity

I−
→ Land with vegetation).

This last false relation is consistent because Land with vegetation always decreases in
the simulation result when Biodiversity has a value above zero, however it does not
represent a valid explanation.

4.3 Find Clusters

The ’Find Clusters’ function finds compartments of causality, called clusters, to reduce
the amount of possible models. These clusters consist of quantities exhibiting equiva-
lent (or inverse) behaviour, i.e. they have the same magnitude and derivative values in
each state. Therefore, there should be (negative) proportionalities and (inverse) corre-
spondences between each pair of quantities in the set of naive dependencies.

The causal ordering (i.e. which quantity affects which other quantity) in clusters
cannot be determined, since there are possible causal relations between each pair of
quantities (in both directions). This causes an explosion of the number of possible mod-
els, as each possible causal ordering can become a model. To deal with this, a single
representation is used to store all the possible causal orderings of the cluster. For sim-
ulation purposes an arbitrary causal ordering is used (alphabetical so that clusters with
the same type of quantities get the same ordering). Note thatfor reasoning purposes we
assume that each cluster has a linear ordering, and that as a result each cluster has a
single input (QIn

C1
) and a single output quantity (QOut

C1
).

A second constraint is that quantities in a cluster should belong to the same struc-
tural entity. This idea (following the ’No function in structure’ principle [5]) indicates
that causality cannot affect other components in the systemother than through its input
and output. Our interpretation is that causal relations aremostly contained in compart-
ments of causality (clusters), and only affect other clusters through their output quan-
tities. After the ’Find Clusters’ step each quantity is partof a cluster. An example of a
cluster in our example model is:{Biodiversity, Land no vegetation, Land with vegeta-
tion} (belonging to the Vegetation entity).

4.4 Find Super Clusters

The ’Find Super Clusters’ function searches for larger compartments of causality (clus-
ters of clusters) to reduce the amount of possible output models. The function takes
clusters and the naive dependencies set as input. A super cluster consists of clusters that
exhibit equivalent behaviour. Therefore there are proportionality and correspondence
relations (in the naive dependencies set) between each quantity pair in the super cluster.

The causal ordering between each of the clusters in unknown due to the fact that
all the quantities in the super cluster exhibit equivalent behaviour. Each ordering would
result in a possible output model. Therefore, a single representation to represent all
the possible causal orderings. We assume a linear ordering of the clusters in the super



cluster. The first quantity of the first cluster is consideredto be the input quantity of the
super cluster, while the last quantity of the last cluster isthe output quantity. After this
step each cluster is part of a super cluster. In the example model (Figure 2), the clusters
belonging the entities ’Human’, ’Vegetation’, ’Land’ and ’Water’ form a super cluster.

4.5 Find Actuators

Each of the super clusters has the capability to propagate the magnitude values (through
its correspondences) and derivative values (through its proportionalities). Therefore,
all the quantities in the system will get a magnitude and derivative value if the input
quantity of each super cluster is actuated (given a magnitude and derivative value).

The ’Find Actuators’ function searches for patterns that frequently occur in quali-
tative models. These patterns include influences that initiate change in the system (the
derivative), and different ways to set magnitudes. Thus farwe found the need for three
re-occurring patterns that cause change. The patterns involve quantities from two or
three super clusters. Each found pattern is validated usingthe consistency checking
function.

External Actuator Pattern The external actuator pattern models an influence from
outside the system (usually an agent). This pattern consists of an interaction between
two super clusters. The output quantity of the first super cluster causes the actuation of

the input quantity in the second super cluster (QOut
SC1

I+
→ QIn

SC2
), and there is a feed-

back relation back to the first super cluster (QOut
SC2

P+
→ QIn

SC1
). The influence causes the

derivative of the quantities in the second super cluster to be set, while the feedback de-
termines the derivative of the first super cluster. The magnitude value of the input quan-
tity of the first super cluster is set using a value assignment(QIn

SC1
= QIn

SC1
(Plus)).

The input quantity of the second super cluster has to be set inthe scenario. In the exam-
ple model the external actuator pattern is found between the’Deforestation rate’ of the
Woodcutters and the large super cluster mentioned in the Find Super Cluster subsection.

Equilibrium Seeking Mechanism Pattern The equilibrium seeking mechanism pat-
tern models equalizing flows due to a potential difference. For example, energy ex-
change between two objects with different temperatures. Inthis pattern three super
clusters interact. The first two model the objects involved,while the third models the
flow. Subtracting the output quantities of the two super clusters (e.g. the temperatures
of the two objects) results in a flow (e.g. an energy flow between the two objects)
(QIn

SC3
= QOut

SC1
− QOut

SC2
). This flow negatively influences the input quantity of the

first super cluster, and positively influences the input quantity of the second super clus-

ter (e.g. the energy quantities in each cluster) (QOut
SC3

I−
→ QIn

SC1
, QOut

SC3

I+
→ QIn

SC2
). The

output quantity of the first super cluster is positively proportional to the flow, while
the output quantity of the second super cluster is negatively proportional to the flow

(QOut
SC1

P+
→ QIn

SC3
, QOut

SC2

P−

→ QIn
SC3

). The input quantities of the first two super clus-
ters should be set in the scenario, while the flow is determined by the subtraction. The
derivatives are determined by the proportionalities. Thispattern is found in the commu-
nicating vessels model.



Interacting Processes Pattern The ’Interacting Processes’ pattern consists of multi-
ple interacting influences that model competing processes.This pattern consists of at

least three super clusters. Two of these represent the competing processes (QOut
SC1

I+
→

QIn
SC3, QOut

SC2

I−
→ QIn

SC3), while the third represents the affected quantities. There are

feedbacks from the affected quantities back to the influencing quantities (QOut
SC3

P+
→

QIn
SC1

, QOut
SC3

P+
→ QIn

SC2
).

The single influences in this pattern are not universally true (i.e. are not in the set
of naive dependencies). The reason is that if there is no inequality information about
the magnitudes of the influencing quantities, there are three options. Firstly,QOut

SC1
>

QOut
SC2

, soDs(Q
In
SC3

) = +. Secondly,QOut
SC1

< QOut
SC2

, soDs(Q
In
SC3

) = −. Or finally,
QOut

SC1
= QOut

SC2
, soDs(Q

In
SC3

) = 0. If no inequality information is known, all three
behaviours will appear in the state graph (in different branches). Consequently, none of
the single influences can be true in all these states. The interacting processes pattern is
found in the population dynamics model.

4.6 Generate Model

The ’Generate Model’ function generates the complete model. Firstly, it creates a model
fragment in which it recreates the structure mentioned in the scenario and adds the
quantities to the correct entities. Secondly, it adds the relations based on the established
clusters. Thirdly, it adds the relations based on the super clusters. Finally, it adds the
applicable actuator patterns to the model fragment to finishthe model. When the gen-
erated model is simulated (with the input scenario) it generates the input behaviour.

5 Results and Conclusions

Our automatic model building algorithm successfully recreates four well established
models: the tree and shade model, the communicating vesselsmodel, the deforestation
model (Figure 4) and the population dynamics model [6]. It isnot yet able to deal with
the Ants’ Garden model [7] and the R-Star Plant-Resource model [8] due to their use
of conditional inequalities to indicate when processes areactive or not.

The results suggest that generating adequate qualitative causal models based on the
behaviour of a system is a feasible approach to support researchers in articulating and
discovering their conceptual understanding. Automatically building and improving the
model should be significantly faster than building a model from scratch. As such it will
help to establish theories that explain the phenomena provided as input data.

6 Future Work

We envision the algorithm as part of our modelling methodology [1]. The algorithm
should be adapted to exploit the intermediate modelling results (created in Garp3) that
result from the framework. For example, the structural model can be used to provide
hints to the causal ordering in super clusters, since the causal relations likely follow the
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Fig. 4. The causal model generated by the automatic model building algorithm.

structural relations. This significantly reduces the amount of possible causal orderings
of super clusters. By making the algorithm interactive, modellers could improve the
causal ordering themselves. However, using the modeller-created state graph will also
require the algorithm to deal with incomplete and inconsistent data. Dealing with such
situations is input for future work.
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