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Abstract. This paper proposes an automated modelling algorithmliaaged on
a observations, creates a qualitative conceptual modeptbaides a causal ex-
planation of system behaviour. The algorithm is envisiottelbdecome a integral
part of our model building methodology, and is meant to sugspoodel builders.

1 Introduction

Within the NaturNet-Redime EU project, ecologists madditptave models about river

restoration ecology issues in several regions. A modeltisthodology was developed
to supportthese domain experts [1]. This structured agprdascribes how the expert’s
conceptual ideas can be formalised, and gradually refirieciinomplete model imple-

mentation. Modellers were able to follow the methodologywybver frequent support
from the modelling experts was required to overcome mauglisues.

This paper proposes an automatic modelling algorithm geatnls qualitative con-
ceptual models based on (a qualitative description of) masiens of the system’s be-
haviour. The algorithm is envisioned to be an integral pathe modelling methodol-
ogy. As such, it takes some of the intermediate modellingltesreated in the mod-
elling framework as input. The result is a qualitative cqetoal model that provides a
causal explanationf the system'’s behaviour.

Besides supporting modellers in articulating their comgabideas, there is the
question whether it is possible to automatically discowarsal explanations of system
behaviour. Several researchers are trying to learn procedsls based on the behaviour
of the system [2, 3], however their approaches typicallyrietfferential equations and
focus more omumerical accuracyln contrast, our approach attempts to leaanisal
explanationssuch as those found in e.g. Qualitative Process Theory Y@R.T

2 Garp3

The qualitative modelling and simulation workbench Garpt8(//www.garp3.org) al-
lows modellers to build conceptual models about systemss@models particularly fo-
cus on the cause-effect relationshipdl(encesndproportionalitieg. Figure 1 shows a
representation of a population with the quantitismber ofandBirth and their quan-
tity spaces. Quantity spaces indicate the possible maimige.g.M, (Number of €
{Zero, Small Medium Large}) and derivative valuesli,(Q.) € {—,0,+}) of each
quantity. We usé//;(Q1) andD(Q1) to refer to magnitude and derivative signs.
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Fig. 1. Model fragment modelling the birth process.

The figure shows a positive influencBiith % Number o). This influence will
increaseD,, (Number of whenM,(Birth) = +, decrease it whef/,(Q1) = — (which
is impossible), and have no effect whéf,(Q1) = 0 (i.e. the size of the population
will increase if there is a birth rate). For a negative infloeit would be vice versa. In
effect, influences determine derivatives based on magestud

The positive proportionalityNumber of 2% Birth) will increaseD,, (Birth) when
Ds(Number of = +, have no effect whe,(Number of = 0, and decrease when
Ds(Number of < 0 (i.e. the derivative of population size is determined bydkeva-
tive of the birth rate). For a negative proportionalitysitiice versa. Since proportional-
ities determine derivatives based on derivatives, theybeasaid to propagate changes.

Other ingredients in Garp3 are operators, inequalitigsievassignments and cor-
respondences. Operators (+ and -) calculate the magnitide wf quantities (e.g.
Q1 — Q2 = Q3, to indicateM,, (Q1) — M,(Q2) = M,(Q3)). Inequalities have mul-
tiple uses, e.gM,(Q1) > M,(Q-). Value assignments indicate that a quantity has a
certain value £, (Q1) = Q1(Plus)). Finally, correspondences indicate that the current

value of one quantity can be inferred from the current vafusnother quantity. There

are quantity correspondenceég;( iy @2) and value correspondenceg;( Plus) i

Q2 (Plus)), which can both be either directed or undirected. The vedueespondence
indicates that ifM,(Q1) = Q1(Plus), M,(Q2) = Q2(Plus) (see Figure 1). If the
value correspondence is bidirectional, the reverse inferés also possible. Quantity
correspondences can be considered a set of value correspmscthetween each con-
secutive pair of the values of both quantities. There are migerse quantity space

correspondenceg)q Q<if Q2) that indicate that the first value @, corresponds to the
last value inQ-, the second to the one before last, etc.

Garp3 models generate non-numerical simulations. Thesé ie a state graph that
represents how the initial situation changes (via the iti@ans) into other situations
due to changes in quantity values (and inequalities betweantities). There are often
multiple solutions, i.e. there can be branching in the sgjateh due to ambiguity. For
example when there are multiple possible derivative vdioea quantity.

3 Algorithm Design

3.1 Algorithm Input

The algorithm takes a qualitative description of a set okobations as input (Figure 2).
The first input is ascenario(Figure 2(a)); the observed initial state of the system. The



second input describes the observed possible behavicisytem can exhibit given

the scenario (Figure 2(b)). This second input is represesdea state graph, in which
each state represents a system state (with particular mdgrand derivative values for

each quantity), and the transitions represent the possiayes states can change into
other states.
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Fig. 2. The input of the automatic model building algorithm.

3.2 Desired Algorithm Output

The desired output of the algorithm is a qualitative causadehthat explains the input

observations. Thatis, the contents of the model shoulddfethat simulating the model

in Garp3 should reconstruct the behaviour (i.e. the staelyrthat was provided as
input. Particularly important are the causal dependemej@®sented in the model (e.g.
as in Figure 1).

3.3 Key Algorithm Ideas

Covering and Pruning One key idea of the algorithm is to first generate those causal
relations (proportionalities and influences) that 'cotle€ desired output behaviour.
That is, simulating the model with those should generatenalsition state graph
that is equal or a superset of the desired state graph. Tieegstgph is then pruned
(i.e. the spurious states are removed) using correspoadamd inequalities.

Causal Abstraction In many cases the precise causal ordering of quantitiesotann
be determined as only a correlation between quantitiesasvRnAs a result, the
number of possible models grows exponentially in the nunafeuantities. To
reduce the number of possible models, the possible cawdsiings are represented
as abstracted representations.

Actuator Patterns The causes of change within qualitative models are almostye
influences. These influences model processes that affesythem. We have in-
vestigated several well-established models to searchafibenms that include influ-
ences. We call these actuator patterns, since they senctmdas of the system.



Representation Guided L earning The goal of the algorithm is to create a qualitative
model. The algorithm uses the semantics of the qualitatveehlanguage to learn
the representation.

4 Automated Model Building Algorithm

An overview of our automated model building algorithm is whoin Figure 3. The
rounded squares represent functions, while the squaressey results. The algorithm
starts with providing the input to the 'Find Naive Dependestfunction. The flow of
the algorithm is clockwise from this function. Some of theermediate results are used
in other functions. The 'Check Concistency’ function isdigetwo other functions, but
is not one of the steps in the algorithm.
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Fig. 3. Overview of the automatic model building algorithm.

4.1 Check Consistency

The check consistency function determines whether relat{generated by the algo-
rithm) are consistent with the input observations. ThatnriBether the relations are
consistent with all magnitude and derivative values of aiitities in each state of the
input state graph.

The input of the function is a set of states consisting of §sesn structure, the
quantities, the magnitude and derivative values in thostest and a set of (causal)
relations. The function verifies the magnitudes and devieatof the quantities based
on the given values and the relations. This is done by twostyffeeasoning. Firstly,
influence resolution which determines the derivatives afities based on the propor-
tionalities and influences. And secondly, inequality redsg to check for consistency.

A set of relations is considered consistent if they are ctest with all the states
in the input state graph. That is, the derived values areléqule given values in the
state. Otherwise, the relations are considered inconsiste

4.2 Find Naive Dependencies

The 'Find Naive Dependencies’ function determines eacbiptessingle causal relation
that is consistent with all input observations. This setaif’a dependencies is used to



determine the plausibility of patterns in the next stepshim algorithm. The function
uses 'Check Consistency’ to check the consistency of sipgiportionality, influence
and correspondence relations between each possible tyyzaiti

The result a set of (causal) relations of which some are &ug (and with veg-

atation”t Biodiversity), and some are false (Biodivers{P}' Land with vegetation).
This last false relation is consistent because Land witletzgn always decreases in
the simulation result when Biodiversity has a value above,Zeowever it does not
represent a valid explanation.

4.3 Find Clusters

The 'Find Clusters’ function finds compartments of caugatialled clusters, to reduce
the amount of possible models. These clusters consist oftifjea exhibiting equiva-
lent (or inverse) behaviour, i.e. they have the same maggmitund derivative values in
each state. Therefore, there should be (negative) propattiies and (inverse) corre-
spondences between each pair of quantities in the set of dajyendencies.

The causal ordering (i.e. which quantity affects which ottpgantity) in clusters
cannot be determined, since there are possible causabnsldietween each pair of
quantities (in both directions). This causes an explosfahenumber of possible mod-
els, as each possible causal ordering can become a modetalavith this, a single
representation is used to store all the possible causatingdeof the cluster. For sim-
ulation purposes an arbitrary causal ordering is used éélgtical so that clusters with
the same type of quantities get the same ordering). Notédhegasoning purposes we
assume that each cluster has a linear ordering, and thatesulh @ach cluster has a
single input (2£7}) and a single output quantit@@;‘t).

A second constraint is that quantities in a cluster shouldrggto the same struc-
tural entity. This idea (following the 'No function in strtize’ principle [5]) indicates
that causality cannot affect other components in the systlier than through its input
and output. Our interpretation is that causal relationgrawstly contained in compart-
ments of causality (clusters), and only affect other chsstierough their output quan-
tities. After the 'Find Clusters’ step each quantity is pafra cluster. An example of a
cluster in our example model i$Biodiversity, Land no vegetation, Land with vegeta-
tion} (belonging to the Vegetation entity).

4.4 Find Super Clusters

The 'Find Super Clusters’ function searches for larger carmpents of causality (clus-
ters of clusters) to reduce the amount of possible outputetsodhe function takes
clusters and the naive dependencies set as input. A supgerctonsists of clusters that
exhibit equivalent behaviour. Therefore there are propoatity and correspondence
relations (in the naive dependencies set) between eachityyzair in the super cluster.
The causal ordering between each of the clusters in unknaertalthe fact that
all the quantities in the super cluster exhibit equivalegitdviour. Each ordering would
result in a possible output model. Therefore, a single seprE@tion to represent all
the possible causal orderings. We assume a linear ordefrthg alusters in the super



cluster. The first quantity of the first cluster is consideieete the input quantity of the
super cluster, while the last quantity of the last clustéhé&output quantity. After this
step each cluster is part of a super cluster. In the exampiehiBigure 2), the clusters
belonging the entities 'Human’, "Vegetation’, 'Land’ and/ater’ form a super cluster.

4.5 Find Actuators

Each of the super clusters has the capability to propagata#ynitude values (through
its correspondences) and derivative values (through gpgotionalities). Therefore,
all the quantities in the system will get a magnitude andvadirie value if the input
quantity of each super cluster is actuated (given a magménd derivative value).

The 'Find Actuators’ function searches for patterns thagifrently occur in quali-
tative models. These patterns include influences thaateitthange in the system (the
derivative), and different ways to set magnitudes. Thusvafound the need for three
re-occurring patterns that cause change. The patternt/égoiantities from two or
three super clusters. Each found pattern is validated usi@gonsistency checking
function.

External Actuator Pattern The external actuator pattern models an influence from
outside the system (usually an agent). This pattern censfsin interaction between
two super clusters. The output quantity of the first supestelucauses the actuation of

the input quantity in the second super clust@fggf1 i QLL,), and there is a feed-

back relation back to the first super clust@de, “* Q). The influence causes the

derivative of the quantities in the second super clusteetsdi, while the feedback de-
termines the derivative of the first super cluster. The mageivalue of the input quan-
tity of the first super cluster is set using a value assignri@it,, = QL% (Plus)).
The input quantity of the second super cluster has to be sle¢igcenario. In the exam-
ple model the external actuator pattern is found betweeiDibfrestation rate’ of the
Woodcutters and the large super cluster mentioned in treeSuiper Cluster subsection.

Equilibrium Seeking M echanism Pattern The equilibrium seeking mechanism pat-
tern models equalizing flows due to a potential differenc®. &xample, energy ex-
change between two objects with different temperatureshis pattern three super
clusters interact. The first two model the objects involwelile the third models the
flow. Subtracting the output quantities of the two superteliss(e.g. the temperatures
of the two objects) results in a flow (e.g. an energy flow betwte two objects)
QL = QY4 — Q94). This flow negatively influences the input quantity of the
first super cluster, and positively influences the input gityaof the second super clus-
ter (e.g. the energy quantities in each clust@§¥;, = Q1r,, Q9 = QLr,,). The
output quantity of the first super cluster is positively prdpnal to the flow, while
the output quantity of the second super cluster is negstipedportional to the flow
Q9 ™% Qln.,, Q94 5 Qln.,). The input quantities of the first two super clus-
ters should be set in the scenario, while the flow is deterdnlnyethe subtraction. The
derivatives are determined by the proportionalities. Plaitern is found in the commu-
nicating vessels model.



Interacting Processes Pattern The ’'Interacting Processes’ pattern consists of multi-

ple interacting influences that model competing procesdes. pattern consists of at

least three super clusters. Two of these represent the ¢mgpeocessesgoy, — =

In_. Q9u 5 QL.,), while the third represents the affected quantities. &ere

ut Pt
feedbacks from the affected quantities back to the influenguantities @gcg

Out P+
SCl' ng‘3 QSCQ

The single influences in this pattern are not universallg {ie. are not in the set
of naive dependencies). The reason is that if there is nasalérg information about
the magnitudes of the influencing quantities, there arestbpions. FirstIng?gt1 >

g%%, sngth Ing) = +}nSecondIy §éh < Q95 s0Ds(QFEs) = —. Or finally,

& = Q%¢s, s0Dy(Qgts) = 0. If no inequality information is known, all three
behaviours will appear in the state graph (in different bhess). Consequently, none of
the single influences can be true in all these states. Theaatieg processes pattern is
found in the population dynamics model.

4.6 Generate Model

The 'Generate Model’ function generates the complete méilwstly, it creates a model
fragment in which it recreates the structure mentioned endbenario and adds the
quantities to the correct entities. Secondly, it adds thaioss based on the established
clusters. Thirdly, it adds the relations based on the sulpsters. Finally, it adds the
applicable actuator patterns to the model fragment to fitislmodel. When the gen-
erated model is simulated (with the input scenario) it gatesrthe input behaviour.

5 Resultsand Conclusions

Our automatic model building algorithm successfully retes four well established
models: the tree and shade model, the communicating vesselsl, the deforestation
model (Figure 4) and the population dynamics model [6]. tasyet able to deal with
the Ants’ Garden model [7] and the R-Star Plant-Resourceei@f due to their use
of conditional inequalities to indicate when processesat®e or not.

The results suggest that generating adequate qualitaiv@atmodels based on the
behaviour of a system is a feasible approach to supportndssra in articulating and
discovering their conceptual understanding. Automdsidalilding and improving the
model should be significantly faster than building a modefrfiscratch. As such it will
help to establish theories that explain the phenomenagedwas input data.

6 FutureWork

We envision the algorithm as part of our modelling methodglfi]. The algorithm
should be adapted to exploit the intermediate modellinglte¢created in Garp3) that
result from the framework. For example, the structural nhede be used to provide
hints to the causal ordering in super clusters, since theataelations likely follow the
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Fig. 4. The causal model generated by the automatic model buildgayithm.

structural relations. This significantly reduces the anmadipossible causal orderings
of super clusters. By making the algorithm interactive, eltsts could improve the

causal ordering themselves. However, using the modelésted state graph will also
require the algorithm to deal with incomplete and incorsistiata. Dealing with such
situations is input for future work.
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