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via Orabona, 4 - 70126 Bari - Italy

{turi,appice,ceci,malerba}@di.uniba.it

Abstract. The automatic discovery of process models can help to gain
insight into various perspectives (e.g., control flow or data perspective)
of the process executions traced in an event log. Association rule min-
ing offers a means of building a human understandable representation of
these process models. The variety of activities and actors involved in a
process execution demands for a relational (or structural) representation
of process execution traces. This paper describes the application of a dis-
tributed multi-relational method for association rule discovery to process
mining. The viability of the proposed approach is assessed on a huge log
of process executions collected by a private company in the space of three
years. In particular, the method discovers frequent associations among
activities and/or actors of a process execution.

1 Introduction

Qualitative patterns such as human interpretable association rules are partic-
ularly interesting for business applications which aim to discover relationships
between events (activities and their actors) and describe the system behavior of
several executions (cases) of a candidate business process.

Association rule discovery poses several difficulties when they are discovered
from data which describe process executions registered in an event log. First of
all, a log collects objects which belong to different data types (cases, activities
and actors). Separate data types are modeled as several relational data tables
(one for each data type). This leads to distinguish between the reference objects
of analysis (cases) and other task-relevant objects (activities and actors), and to
represent their interactions. Classical algorithms for association rule discovery
[1] assume that data are stored in a single table of a relational database, hence
they do not make any distinction between reference objects and task-relevant
objects, nor they allow the representation of any kind of interaction. Second,
events stored in a log are marked from a timestamp. This timestamp indicates
the time of occurrence and implicitly defines a total temporal order over events.
Temporal autocorrelation requires that the effect of a property at any event may
not be limited to the specific event. Third, some domain knowledge (e.g. the
definition of the ordering relation between events) may be available, which can



be profitably exploited only if some inferential mechanisms typical of a theorem
prover are used by the data mining algorithms.

These challenges are naturally faced by resorting to methods developed in
multi-relational data mining [7], where data are assumed to be spanned in several
data tables (or relations) of a relational database and relational patterns (i.e. pat-
terns which may involve several relations at once) are discovered. SPADA [12] is
a multi-relational data mining method that discovers relational association rules.
In the case of log data, rules discovered by SPADA capture interesting associ-
ations between process executions (reference objects) and events (task-relevant
objects). Task-relevant objects are represented at several levels of a generaliza-
tion hierarchy (e.g. an actor can be an administrator, a viewer or a user), hence
rules are discovered at several levels of granularity. In addition, SPADA can use
some available domain knowledge during the discovery process. The main limita-
tion of SPADA is the high computational complexity which makes the analysis of
large databases practically unfeasible. To overcome this limitation, a distributed
version of SPADA has been realized, which produces “approximate” association
rules by sampling the original data, by running SPADA on computational nodes
of a GRID to analyze each sample independently, and finally by collecting local
results of each SPADA execution in order to find approximate global results [2].

In order to prove the viability of the proposed multi-relational approach also
on real cases, in this paper we briefly describe the distributed multi-relational
method for association rule discovery (Section 2) and then we present an appli-
cation to mining a very large data set derived from a real event log (Section 3).
Finally, some conclusions are drawn.

2 Process Models in Multi-Relational Data Mining

Studies for association rule discovery in Multi-Relational Data Mining [12] are
rooted in the field of Inductive Logic Programming (ILP) [14]. In ILP both
relational data and relational patterns are expressed in a first-order logic and
the logical notions of generality order and of the downward/upward refinement
operator on the space of patterns are used to define both the search space and the
search strategy. In the specific case of SPADA, properties of both reference and
task relevant objects are represented as the extensional part DE of a deductive
database D [6], while the domain knowledge is represented as a normal logic
program which define the intensional part DI of the deductive database D.

In the application of SPADA to process mining, the extensional database
stores information on the event log (e.g., process executions and actors) while
the intensional database includes the definition of the relation before which makes
explicit the execution order of activities that is implicit in the timestamp of each
event. An example of possible definition of the relation before is the following:

before(A1, A2) ← event(C, A1), event(C, A2), A16= A2,
time(A1,T1), time(A2,T2), T1<T2,
not(activity(C, A), A6= A1, A 6= A2, time(A,T), T1<T, T<T2)



which defines the direct successor relation between two events.
The set of ground atoms in DE is partitioned into a number of non-intersecting

subsets D[e] each of which includes facts concerning the activities and actors
involved in a specific process execution e. This means that SPADA discovers
frequent patterns across the different process executions, which are the units of
analysis. This partitioning of DE is coherent with the individual-centered repre-
sentation of training data [4], which has both theoretical (PAC-learnability) and
computational advantages (smaller hypothesis space and more efficient search).
Fragments of the process models underlying the generation of the various logged
executions are expressed in the form of relational association rules:

process(P )⇒ µ(P ) [s, c],

where process(P ) is the atom that identifies a process execution, while µ(P ) is
a conjunction of atoms which provide a description of a fragment of the process
execution P . Each atom in µ(P ) describes either the before relation between ac-
tivities or the participation of an actor to an activity or a property of an actor,
activity and/or process execution. An example of discovered association rule is
the following:

P1: process(P) ⇒
activity(P,A), is a(A,activity), before(A,B), is a(B,activity),
actor(A,C), is e(C, actor). [s=63%, c=100%]

The support s estimates the probability p(process(P )
⋃

µ(P )) on D. This
means that s% of the units of analysis D[e] are covered by process(P )

⋃
µ(P ),

that is a substitution θ = {P ← e} · θ1 exists such that process(P )
⋃

µ(P )θ ⊆
D[e]. The confidence c estimates the probability p(µ(P )|process(P )).

SPADA performs both an intra-level search and an inter-level search. The
former is based on the classical levelwise method described in [13], with the
variant that the syntactic ordering between patterns is based on θ-subsumption
[15]. In the intra-level search all the task-relevant objects in a pattern belong
to the same level l of the generalization hierarchies. In the inter-level search,
SPADA takes advantage of statistics computed at a level l when it searches in
the space of more specific task-relevant objects at level l + 1. By descending
through a hierarchy it is possible to view the same activity or actor at different
levels of abstraction (or granularity) and discover multi-level association rules.
For example, the followingassociation rule:

P2: process(P) ⇒
activity(P,A), is a(A,namemaker), before(A,B), is a(B,workflow),
actor(A,C), is e(C, admin). [s=55%, c=100%]

provides us with better insight into the nature of activities and actors than P1.
The application of SPADA to process mining is not straightforward, since the

high computational cost of the search and the usage of an in-memory deductive



database do not allow for mining massive event logs. sGSPADA [2] overcomes
computational limits of SPADA by distributing and (possibly) parallelizing the
discovery of local process models on random multi-samples of the original set of
units of analysis and then by deriving an approximation of the set of “exact”
global association rules (i.e. association rules to be discovered on the entire
database) from the various sets of local rules. “Approximate” global association
rules are those which are discovered in at least k of the n sample databases.
Support and confidence are estimated by averaging the values of support and
confidence of local association rules.

Random multi-sampling generates n samples with replacement, each of which
includes a percentage p of the data in the original dataset. The samples generated
are not a partition, so even 10 samples with p = 10% do not generally correspond
to the entire dataset. This sampling procedure is similar to that used in bootstrap
estimation of a parameter (e.g., predictive accuracy of a classifier) [8], as well
as in some ensemble data mining methods, such as bagging [5], which combine
multiple models to achieve better prediction accuracy than any of the individual
models could on their own.

As observed by Zaki et al. [17] sampling can speed up the mining process by
more than an order of magnitude by reducing I/O costs and drastically shrinking
the number of transactions to be considered. Moreover, when training data are
kept in main memory as in SPADA, sampling is the only way to make their anal-
ysis workable. By working on sampled databases, it is also possible to distribute
the computation on a Grid and to parallelize the execution the data mining
algorithm. The problem of discovering spurious local patterns can be mitigated
by increasing the number of samples, so that the set of “approximate” global
patterns derived from local patterns is more likely representative of the set of
“exact” global patterns.

3 Mining Process Models from an Event Log

Experiments are performed on a real event log provided by THINK3 Inc1, one
of the global player in the market of solutions for the Product Lifecycle Manage-
ment, whose mission is to help manufacturers optimizing their entire product
development processes and to help industrial designers creating better, more
innovative products.

3.1 Data Description

THINK3 data traces 353,490 process executions of one of its customers. The
period under analysis is from April 7th, 2005 to January 10th, 2007 for a total
of 1,035,119 activities and 103 promoters. Taxonomic knowledge on activities and
actors is encoded in two distinct hierarchies reported in Figure 1. For example,
“muller” is an “administrator”, “altendorfer” is a “user”, “administrator” is an
“originator” and so on. Both a user and an administrator are generic actors.

1 http:// www.think3.com/en/default.aspx



activity [1035119]
+ −− administrator tools [131]
| + −− o665536, o713252,...
+ −− workflow [919052]
| + −− o0,o1,o2,...
+ −− namemaker [106839]
| + −− o9,o12,...
+ −− delete [2767]
| + −− o318,o413,...
+ −− deleteEnt [2354]
| + −− o388491,o391204,...
+ −− prpDelete [471]
| + −− o339710,o340636,...
+ −− prpSmartDelete [53]
| + −− o794996,o794997,...
+ −− prpModify [34]
| + −− o488390,o522414,...
+ −− cast [1430]

+ −− o292,o491,...

actor [108]
+ −− user [103]
| + −− altendorfer,amaeder,andrea,...
+ −− administrator [3]
| + −− mueller,cma,admin
+ −− viewer [2]
| + −− fenzl, wimmer

Fig. 1. Hierarchies on activities and actors involved in the process executions traced
in the THINK3 event log.

For each activity a textual description is registered in the event log, while for
each actor a working group is defined. In this experiment, we have thirteen dis-
tinct descriptions of the activities and thirty-three distinct groups of promoters.
The extensional database DE includes 4,374,840 ground facts, while the inten-
sional part DI includes the definition of the predicate before, which takes into
account temporal autocorrelation of events. Additional predicates are intension-
ally defined to group similar activities. For example, the following clauses:

release(X) ← description(X,freigabe).

release(X) ← description(X,freigabe h).

release(X) ← description(X,freigabe j).

release(X) ← description(X,freigabe m).

define the predicate “release” which describe the activity of release (“freigabe”
in German) independently from the release type (H, J or M). Similarly, other
clauses in DI define the predicates pruefung, techaend, cancelled, construction,
ktgprocess, musterbau, nullserie, techniche, tiffprocess, undermodify and workin-
progress which describe an activity.



3.2 Process Model Discovery

sGSPADA is run by randomly extracting n=100 sample databases with p=1%.
The discovery of the local multi-level frequent relational patterns is parallelized
on 100 nodes. The size of the original dataset prevents SPADA from processing
units of analysis altogether.

Different minimum support thresholds are defined for each level, such that
the higher the level (i.e., the more abstract the task-relevant objects involved in
the pattern), the higher the support (i.e., the more selective is the discovery pro-
cess). In particular we set the following SPADA’s parameters: minsup[1] = 0.25,
minsup[2] = 0.1, minsup[3] = 0.01 and max len path = 14. The last parame-
ter defines the maximum number of atoms in a frequent pattern considered by
SPADA during its search. With the thresholds defined above, there are no fre-
quent patterns with more than twelve atoms, this means that in this case study,
sGSPADA returns the set of all approximate global association rules.

Approximate global association rules are reconstructed from the local ones
by varying k from 1 to 100. Their number is reported in Table 1 and, as expected,
it decreases when k increases. The average number of local frequent patterns (at
any level) discovered on each sample is 673.11, while the standard deviation is
relatively small (53.47). As reported in the last column of Table 1, 369 local
frequent patterns (about 54% on average) are common to all samples.

Table 1. Number of approximate global frequent rules found by varying k in [1,100].

k 1 10 20 30 40 50 60 70 80 90 100

#P 1244 1043 820 747 669 619 574 539 498 468 369

An example of process model discovered at level l = 2 is the following:

P3: process(P) ⇒ activity(P,A), is a(A,workflow), before(A,B), B6=A,
is a(B,workflow), before(B,C), C6=B, C6=B, is a(C,workflow), actor(A,D),
is a(D,user), workinprogress(A), release(C), construction(B).

P3 covers 19,789 process executions and is found for k = 90. The global support
computed by averaging over the support of all local frequent rules equal to P3 is
20.78% (obviously, it is greater than minsup[2]). This rule reports the execution
order between three activities (A, B and C) within a process instance (P ). Both
A, B and C are workflow activities, but A is described as a work in progress, B

as release and C as construction. The actor of A is a simple user (D).
By descending the hierarchy of actors, sGSPADA discovers the following rule:

P4: process(P) ⇒ activity(P,A), is a(A,workflow), before(A,B), B6=A,
is a(B,workflow), before(B,C), C6=B, C6=B, is a(C,workflow), actor(A,D),
is a(D,andrea), workinprogress(A), release(C), construction(B).



which provides us with a deeper insight on the actor of the work-in-progress, who
is identified as andrea. This rule, however, covers only 1,139 process executions
and has a global support of 1.26.

4 Related Works and Conclusions

Process mining targets the automatic discovery of knowledge from massive event
logs. In this work, we investigate the discovery of association rules as a means
to extract a human interpretable representation of process models. Association
rules are intended as a means to capture the typical order execution between
activities (control perspective) and, at the same time, they model the possible
associations among the properties of the process, activities and actors (data per-
spective). In this work, we considered a multi-relational approach to association
rule discovery in order to take into account the relational structure of data, since
several activities and/or actors may be involved in the same process execution.

Recently, the multi-relational or ILP approaches to building business process
models from event logs is receiving attention. Goedertier et al. [10] have faced
the task of predicting whether, given the state of a process instance, a particular
state transition can occur, by learning relational classification rules. The repre-
sentation formalism considered in this work is Event Calculus, a first-order logic
that elegantly captures the time-varying nature of facts. Learning is based on
both positive information (possible transitions) and negative information (pro-
hibited transitions). When no negative information is actually available in the
logs, it is artificially generated by means of a sort of closed-world assumption
(no pair of similar traces exists such that the transition of interest occurs). Sim-
ilarly, Lamma et al. [11] have considered both compliant (positive information)
and non compliant (negative information) execution traces and adapt the al-
gorithm ICL [16] to learn constraints among activities (integrity constraints)
expressed as logical formulas. In practice, the main problems of both methods
are the reliable provision of negative information and their scalability to huge
event logs.

Temporal data mining methods can also be applied to the discovery of the
execution order of activities. Giannotti et al. [9] have proposed a paradigm to
extract sequential patterns where each event transition has a temporal annota-
tion. This paradigm has been applied to process logs [3] in order to discover the
execution order of activities or actors. The analogy with the problem solved by
sGSPADA stops here, since the proposed framework cannot capture the possible
associations between the properties of the actors and the activities involved in
a process, nor does it take into account hierarchies on activities and actors.

Future work on sGSPADA will investigate the integration of discovered frag-
ments of process models in order to build more complex models, where parallel
execution of processes is also allowed. We also plan to develop a plug-in for the
extendible environment ProM 5.02.

2 http://prom.sf.net/
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