
Efficiently learning simple timed automata

Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen

Delft University of Technology, P.O. Box 5031, 2600 GA, Delft, the Netherlands
s.e.verwer@tudelft.nl

Abstract. We describe an efficient algorithm for learning deterministic
real-time automata (DRTA) from positive data. This data can be obtained
from observations of the process to be modeled. The DRTA model we
learn from such data can be used reason and gain knowledge about real-
time systems such as network protocols, business processes, reactive sys-
tems, etc.

1 Introduction

We describe an efficient algorithm for learning a timed automaton model from
observations. Timed automata (TAs) [1] are finite state models that model time
explicitly, i.e. using numbers. They are insightful models that can be used to
model and reason about real-time systems such as network protocols, business
processes, reactive systems, etc. In practice, it can be very difficult to construct
such an automaton by hand. That is why we are interested in automatically
identifying these models from data.

Data can be obtained from observations of the process to be modeled. This
results in a set of time series of events: every time-step the events occurring
in the system are measured and recorded. We assume that the process is sta-
tionary, i.e., time shift independent. Therefore, it does not matter exactly when
these observations are initiated and stopped; The observed behavior remains
the same. From this timed data, we could have opted to identify an untimed
model that models time implicitly, i.e. using states instead of numbers. Exam-
ples of such models are the deterministic finite state automaton (DFA) and the
hidden Markov model (HMM), see e.g., [7, 8]. The reason for modeling time ex-
plicitly is that modeling time implicitly results in an exponential blow-up of
the model size: numbers use a binary representation of time while states use a
unary representation of time. Thus, an efficient algorithm that learns a timed
system using an untimed model is by definition an inefficient algorithm since it
requires exponential time and space in the size of the timed model. In contrast,
using the algorithms described in this paper, it is possible to learn simple types
of timed models efficiently, i.e. in polynomial time.

This paper is organized as follows. We first describe the exact model we
want to learn (Section 2), called a real-time automaton [3]. Then, we give our
algorithm for learning these models (Section 3). Our algorithm makes use of
statistical tests in order to determine its actions. We explain how to calculate
these tests and how our algorithm uses these tests (Section 4). We end with a
discussion and conclusion regarding the algorithm and its uses (Section 5).

b

b

a [6,∞) b

a [0,5]

a

a

Fig. 1. A DRTA. The nodes of the graph are states, the arcs are transitions. Every tran-
sition has a label and a clock guard. When the clock guard is absent, it is always true,
i.e., it is [0, ∞). The start state is indicated by an arc pointing to it from nowhere. For the
purpose of this paper, it is not useful to indicate which states are final.

2 Real-time automata

We assume the reader to be familiar with the theory of languages and automata,
see e.g., [8]. Our work focusses on learning algorithms for a simple timed au-
tomaton known as a deterministic real-time automaton (DRTA) [3]. Our learn-
ing algorithms are based on the state merging method for learning a DFA. The
problem of learning DFAs has been the subject of many studies within the
grammatical inference field, and the state merging method is currently the best
method for solving it, see [2].

A DRTA is a timed language model. A timed language is a set of finite se-
quences of symbol-time value pairs τ = (s1, t1)(s2, t2) . . . (sn, tn) known as
timed strings or time-stamped event sequences. Every time value ti ∈ N in such
a timed string represents the time that has elapsed since the occurrence of the
previous symbol (event).

The structure of a DRTA is like that of a DFA. However, in addition to the
DFA structure, every transition in a DRTA contains a boolean constraint, known
as a clock guard. Such a clock guard is represented by an interval in N. We say
that a clock guard G is satisfied by a time value t if t ∈ G. The clock guard G of
a transition δ specifies at what time δ is allowed to be fired: δ can only be fired
if the time t since the occurrence of the previous symbol satisfies G. In this way,
the execution of a DRTA depends not only on the symbols, like a DFA, but also
on the time between two consecutive symbols of a timed string. Figure 1 shows
an example of a DRTA. An DRTA is formally defined as follows:

Definition 1. A real-time automaton (RTA) is a tuple A = 〈Q, Σ, T, q0, F〉, where
Q is a finite set of states, Σ is a finite set of symbols, ∆ is a finite set of transitions, q0 is
the start state, and F ⊆ Q is a subset of final states.

A transition δ ∈ ∆ in this automaton is a tuple 〈q, q′, a, G〉, where q, q′ ∈ Q are
the source and target states, a ∈ Σ is a symbol known as the transition label, and G is
a clock guard defined by an interval in N.

An RTA is called deterministic (DRTA) if for every state q ∈ Q, every symbol
a ∈ Σ, and every time value t ∈N there exists exactly one transition 〈q, q′, a, G〉 ∈ ∆
such that G is satisfied by t.

The transitions 〈q, q′, a, G〉 of a DRTAA define the behavior ofA as follows:
whenever the automaton is in state q, reading symbol a, and the clock guard
G is satisfied by the time since the previous symbol, then the automaton will
move to state q′. Extending this from smbol-time value pairs to timed strings
leads to the definition of a run of a DRTA:

Definition 2. A run of an DRTA 〈Q, Σ, ∆, q0, F〉 over a timed string

(a1, t1) . . . (an, tn) is a finite sequence (q0, 0)
t1−→ (q0, t1)

a1−→
(q1, 0) . . . (qn−1, 0) tn−→ (qn−1, tn) an−→ (qn, tn), such that for all 1 ≤ i ≤ n,
there exists a 〈qi−1, qi, ai, Gi〉 ∈ ∆, such that Gi is satisfied by ti. If the run of a DRTA
is such that qn ∈ F, it is called an accepting run.

We call a pair (q, t) ∈ Q×N of a state and a time value a timed state. In a run

the subsequence (qi−1, ti)
ai+1−→ (qi, 0) represents a state transition like in a DFA.

In addition to these, a DRTA makes time transitions represented by (qi, 0)
ti+1−→

(qi, ti+1). A time transition of t time units can be viewed as moving from one
timed state (q, v) to another timed state (q, v + t) while remaining in the same
untimed state q. These time transitions effectively model the duration of events
in the system or the amount of time spent in certain states of the system. A
timed string ends in the last state of its run, i.e., it ends in qn. The set of all strings
τ such that the run of A over τ is accepting is called the language L(A) of A.
There exist many systems that can be modeled efficiently and intuitively using
such a time dependent language. We learn such a language from examples by
using an DRTA model and a modified state merging algorithm.

3 Identifying DRTAs

In previous work, we constructed an efficient algorithm for learning DRTAs
from labeled data [9]. A high-level view of this algorithm is given in Algo-
rithm 1. The algorithm receives as input a finite set S of example timed strings
that are (assumed to be) generated by a timed system. The goal of the learning
problem is to find a smallest DRTA model that is consistent with the input. The
reason that this has to be a smallest model is the principle of Occam’s razor.
This states that the simplest (smallest) explanation for some observations is the
best explanation. As a bonus, smaller models are also easier to comprehend,
and hence give more insight into the observed process.

From the input set S, our algorithm constructs a prefix tree A. This prefix
tree is a DRTA that is such that:

– all the clock guards are equal to true (it disregards time values),
– there exists exactly one path to any state (it is a tree), and
– the run of A on any timed string from S ends in a state in A.

Figure 2 shows an example of such a prefix tree. Starting from this prefix tree,
our algorithm performs the most consistent merge or split as long as consistent
merges or splits are possible.

Algorithm 1 State merging and splitting DRTAs
Require: A set of timed strings S.
Ensure: The result is a small consistent DRTA A.

Construct a timed prefix A tree from S.
while States can be merged or split consistently do

Evaluate all possible merges and splits.
Perform the most consistent merge or split.

end while
return The constructed DRTA A

b

b

a a
a

b

b

Fig. 2. A prefix tree for the input set {(a, 3)(b, 2), (a, 4)(b, 2)(a, 4)(a, 5), (a, 6)(b, 5)(a, 8),
(a, 9)(b, 4)(b, 2), (b, 4)(b, 2)}.

A merge (Figure 3) of two states q1 and q2 replaces q1 and q2 with a new state
q3. This new state q3 is the target and the source state of all transitions that have
q1 or q2 as either their target or source state respectively. After this replacement,
it is possible that A contains some non-deterministic transitions, i.e., there can
be two transitions with q3 as their source state that have the same label and
overlapping clock guards. These non-deterministic transitions are removed by
the determinization procedure: continuously merging the target states of these
transitions until none are left. This merge procedure is identical to a merge in
the state merging algorithm for DFAs, see [2].

In [9], we introduced a transition splitting process in order to learn the clock
guards of a DRTA. A split (Figure 4) of a transition δ, at time t replaces δ by
two new transition δ1 and δ2 that that are identical to δ except for their clock
guards. The clock guard of δ1 is such that it is satisfied by all clock values that
satisfy δ up to time t, and the clock guard of δ2 is such that it is satisfied by
all clock values that satisfy δ starting at time t. The timed strings from S that
have a run over δ1 and δ2 are subsets of the timed strings from S that had an
execution path over δ. Therefore, the prefix tree is recalculated starting from the
new transitions δ1 and δ2. We only allow a split of a transition if its target has not
yet been merged. Splitting transitions can later (after some merges) result in two
non-deterministic transitions that have partially overlapping clock guards. In
this case, the determinize procedure first splits these transitions before merging
their target states. This splitting continues until all non-deterministic transitions
have identical clock guards.

A merge of two states essentially learns the target state of a transition. A split
of a transition learns the clock guard of a transition. The main loop of our algo-

M

Mb

b

a a
a

b
b

D

b

a
a

b
b

D
b

a

Fig. 3. The merge operation. Left shows the original DRTA, right shows the result after
merging the states labeled with M. In the right figure, D labels the first two states that
are to be merged by the deteminization procedure.

b

b

a a
S a

b
b

b

b

a aa [0,5]
b

b

a [6,∞] a

b

Fig. 4. The split operation. Left shows the original DRTA, right shows the result after
splitting to transition to the transition labeled with S. The subtrees of the new transitions
in the resulting DRTA are recalculated from the input set.

rithm continuously merges states and splits transitions until consistent merges
or splits can no longer be performed. Because our algorithm learns either a
clock guard or a target state of a transition in every iteration, our algorithm is
capable of learning any DRTA. Furthermore, since a merge or a split will never
be undone, and since there are only a polynomial amount of possible merges
and splits, our algorithm requires time polynomial in the size of the input set S.

There is one important part of Algorithm 1 that we left undefined: What
does it mean to be consistent? In [9], the answer to this question was simple:
The algorithm got a labeled data set as input and consistency was defined using
these labels. However, for many applications this setting is unrealistic: Usually,
only positive data is available. What to do in this case? Intuitively, a merge or
split is consistent if the data from the input set agrees with the resulting DRTA.
For example, suppose that our algorithm will be used to learn a DRTA model
for an unknown process P that can be modeled using the DRTA of Figure 1.
The data S obtained from P will be such the events observed at the beginning
will be more or less similar to the evens observed after seeing ab. In our prefix
tree, this implies that the start state can be merged consistently with the state
reached by ab. Also, this data S will be that the events observed after seeing
(a, t), t ≤ 5, are more or less different from the events observed after seeing
(a, t′), t′ > 5. In our prefix tree, this implies that the start state will contain a
transition with label a that can be split consistently with time value t = 5.

Our consistency check is a check for similarity of events. A merge (split)
is more consistent than another merge (split) if the observed events are more

(less) similar. Hence, in order to determine the most consistent merge or split,
we require a measure for this similarity. The measure we use is based on the
one used in an algorithm for learning DFAs using statistical tests [5]. In the
next section, we show how additional statistics can be used to add the time
information that is available in timed strings to this test.

4 Statistics for learning DRTAs

In this section, we show how to use statistics in order to determine how con-
sistent a merge or split is. Basically, this test should test the null-hypothesis
that the events that are observed after reaching a state q1 come from the same
distribution as the events that are observed after reaching another state q2.

The algorithm for learning DFAs using statistics that our method is based
on uses the Chi-square test to test this null-hypothesis [5]. However, the Chi-
square test cannot be applied directly to sequences of events because their prob-
abilities are dependent. Therefore, this test is used to only test whether the
single events that are observed directly after reaching state q1 and q2 are dif-
ferently distributed. The distributions of subsequent events are tested using
separate Chi-square tests using the pairs of states that are merged by the deter-
minization procedure. These separate tests are independent and every one of
them results in a p-value. This is the probability (in the limit) that the observed
distributions over single events, or something more extreme, occurs when the
null-hypothesis holds. If this value is sufficiently low for any of these tests (less
than 0.05), the null-hypothesis is rejected and the states cannot be merged con-
sistently. This test is then applied to all pairs of mergeable states. If the null-
hypothesis is not rejected for some pair of mergeable states, then the pair of
mergeable states that resulted in the highest p-value are merged.

We use similar procedure for testing the consistency of merges and splits
in our algorithm. In addition to the Chi-square test, we used a Kolmogorov-
Smirnov (KS) test in order to make use of the time values of timed strings. This
test tests the null-hypothesis that the time values of occurrences of a particular
event that are observed after reaching q1 and q2 are the same. Thus, for every
pair of states, in addition to the single Chi-square test, |Σ| KS tests are per-
formed (where |Σ| is the size of the alphabet). These KS tests are useful if the
timing of certain events in the process depend on the state of the process. We
believe this to be true for many real-time processes.

Combining the Chi-square and KS tests results in many independent tests
that are performed for determining the consistency of a single merge or split.
Even if the events observed after reaching q1 and q2 come from the same (timed)
distribution, the probability the one of these tests results in a sufficiently low
p-value is high. Because of this, we use a method that combines all of these
p-values into a single test, called Fisher’s method. Fisher’s method transforms
the p-values from all the individual tests into values that should follow a Chi-
square distribution. Whether this holds is then tested using a single Chi-square
test. This results in a single p-value for the null-hypothesis for determining the

consistency of a single merge or split. We reject the null-hypothesis if this p-
value is less then 0.05.

In our algorithm, the most consistent merge is the one that results in the
highest p-value greater than 0.05. The most consistent split is the one that re-
sults in the lowest p-value less than 0.05. In the case that there are consistent
merges and splits, our algorithm uses the following rules to determine which
merge or split to perform:

– Perform the most consistent split if its value is less than 0.01.
– Otherwise, perform the most consistent merge if its value is greater than

0.1.
– Otherwise, perform the most consistent split.

The intuition behind these rules is that we prefer performing consistent splits
to consistent merges, but not if this merge is much more consistent than the
split. Using these tests and rules in our algorithm results in a state-merging and
transition-splitting method for learning DRTAs from positive data.

5 Discussion and conclusions

We described an algorithm for learning deterministic real-time automata
(DRTA) from positive data based on the state-merging method for learning a
deterministic finite state automaton (DFA). The data consist of timed event se-
quences that are obtained by observing the process. Since the DRTA is a model
for a stationary process, it does not matter exactly when these observations are
initiated and stopped. From such data, the algorithm uses statistical tests in
order to find a DRTA model that succinctly captures the behavior of this pro-
cess. The resulting DRTA model is insightful and can be used to reason and
gain knowledge about the observed process. The algorithm can be shown to be
efficient, i.e., it requires time polynomial in the size of the observations.

In the near future, we would like to report on the results achieved using our
algorithm. We implemented and tested it on data generated from a randomly
generated DRTA. The results are promising in that our algorithm finds DRTAs
very similar to the original DRTAs.

However, since our algorithm learns from only positive data, there is no
negative data to test it against, and hence it is difficult to evaluate the perfor-
mance of our algorithm. Even more difficult is the problem how to compare
our method with other known methods that use a state-based representation of
time, i.e., algorithms for learning deterministic finite state automata (DFAs) or
hidden Markov models (HMMs). How to do this is an open problem that we
intend to solve in future work.

In the near future, we also plan to test our algorithm on real (non-generated)
data. This data will be obtained from sensors that are installed on trucks. From
their measurements we intend to learn models that describe different kinds of
driving behavior.

In related work, there exists several algorithms that learn DFAs from posi-
tive data, for an overview see [2]. Actually, these algorithms learn a probabilis-
tic DFAs (PDFA), i.e., a DFA with probabilities added to the transitions. The
expressive power of these PDFAs is equivalent to that of HMMs [4]. There-
fore, our algorithm essentially learns a probabilistic variant of DRTAs, which is
likely equivalent to some timed variant of an HMM. It would also be interest-
ing to compare our method to other timed variants of HMMs, such as hidden
semi-markov models, see e.g., [6].

References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

2. Colin de la Higuera. A bibliographical study of grammatical inference. Pattern Recog-
nition, 38(9):1332–1348, 2005.

3. Catalin Dima. Real-time automata. Journal of Automata, Languages and Combinatorics,
6(1):2–23, 2001.

4. P. Dupont, F. Denis, and Y. Esposito. Links between probabilistic automata and hid-
den markov models: probability distributions, learning models and induction algo-
rithms. Pattern Recognition, 2005.

5. Christopher Kermorvant and Pierre Dupont. Stochastic grammatical inference with
multinomial tests. In ICGI ’02, pages 149–160. Springer-Verlag, 2002.

6. Kevin P. Murphy. Hidden semi-markov models (hsmms). unrefereed tutorial, 2002.
7. Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications

in speech recognition. In Proceedings of the IEEE, volume 77, 1989.
8. Michael Sipser. Introduction to the Theory of Computation. PWS Publishing, 1997.
9. Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. An algorithm for learning

real-time automata. In Benelearn’07, pages 128–135, 2007.

