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Abstract. Local models are high-quality models of small regions of the
input space of a learning problem. The advantage of local models is that
they are often much more interesting and understandable to the domain
expert, as they can concisely describe single aspects of the data instead of
describing everything at once as global models do. This results in better
plausibility and reliability of models.
While it is relatively easy to find an accurate global and interesting local
model independently, the combination of both goals is a challenging task,
which is hard to solve by current methods. This paper presents an SVM-
based approach that integrates multiple local classification models into
one global model, such that the resulting global model is both accurate
and adequately reflects the local patterns on which it is based.

1 Introduction

Local models are high-quality models of small regions of the input space of
a learning problem. The advantage of local models is that they are often much
more interesting and understandable to the domain expert, as they can concisely
describe single aspects of the data instead of describing everything at once as
global models do. Concentrating on single, local aspects facilitates the inspection
of models by human experts, which very soon gets too complex when multiple
correlations and real-world effects are mixed [1].

Interpretability is a critical goal in a knowledge discovery process [2], as an
understandable model allows to assess information encoded in the model, in
particular the reliability of the learner’s predictions, far better than by simple
statistical error measure and also enables the user to discover modeling errors
like biased sampling that are otherwise hard to detect. In addition, in real-world
applications often a black-box prediction of a class label alone is not of very much
interest, for example in the analysis of customer churn. Predicting whether or not
a single customer will leave is nice, but even more important is understanding
the reasons why customers are leaving, such that adequate reactions can be
performed, e.g. targeting a marketing campaign.

The goal of this paper is to integrate local models into the framework of
Support Vector Machines [3], where a set of local models is used to describe
interesting patterns in the data, and an approach inspired by the SVM is used
to integrate all local models into a single prediction. We make no assumption



on the nature of the local models, such that any learner that returns a set of
partially defined classification functions can be used in this scheme.

The approach presented here allows local models to build an approximative
understandable classifier, while the more adaptive SVM classifier improves ac-
curacy on those parts of the input space that are hard to model. This idea is
depicted in Figure 1. In addition, this approach allows to identify regions of the
input space, where relevant information is missed by the local patterns, but can
be identified by a more complex numerical classifier.
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Fig. 1. Simple pattern (rectangle) and complex correction of the pattern (nonlinear
area)

Obviously, this approach is only meaningful if the local models and the com-
bined (SVM plus local models) learner are closely correlated; we want to avoid
the pathological situation where the local models are completely wrong and are
overruled by the SVM on any single example. Hence, it is necessary to integrate
the following constraint into the learning process

τ-constraint: P (fLM 6= fcombined) ≤ τ for a given constant τ ∈ [0, 1]

where fLM (x) is the function obtained by simply averaging all applicable local
models on x (it may be advisable to generate local models that are pairwise
disjoint, such that fLM simply selects the applicable local model, if such exists,
and returns a default value otherwise). It will be shown later that the proposed
approach can indeed find a model which can be used for all possible values of τ

simultaneously.
Additionally, the new method will identify points which are not adequately

modeled by the existing local models, such that it can be used to target a follow-
up iteration of the local model learner to interesting regions of the input space.

The paper is organized as follows: the next section gives a short introduction
to the paradigm of local patterns on which the work in this paper is built. Section
3 introduces the new learner, which is empirically evaluated in Section 4. Section
5 concludes.



2 Detecting Local Patterns

Experience shows that large, global patterns in a model are often not interesting
to a user because they are easy to detect and well known to domain experts. Pat-
terns are more informative if they contradict what is already known [4]. Indeed,
one can often with very different methods find a simple model which provides
not an optimal solution, but a reasonably good approximation. The hard work
usually lies in improving an already good model. An interesting alternative is
to let a domain expert explicitly define what he already knows and then detect
patterns that map out where his believes are wrong.

To deal with this situation, the field of local pattern detection [5, 6] has come
into attention. Local pattern detection is defined as the unsupervised search for
local accumulations of data points with unexpected high density with respect to
some background model [7]. In short, the idea can be summarized in the intuitive
equation

Data = Global Model + Local Model + Noise.

Please note that the cases described by the local model are not to be confused
with indescribable outliers or over-fitted patterns. The local models are always
assumed to be carefully validated and to describe useful patterns in the data.

Given a set of local models, the question in a classification setting is now how
to combine the local models back into a single prediction, i.e. how to globalize
them. It is possible to approach this problem by using ensemble classifiers. How-
ever, in these approaches usually a more or less complicated rule to combine the
predictions of the individual classifiers into a single prediction. Multiple classi-
fiers are a most successful approach in terms of accuracy, but the interpretability
of theirs models is very limited. The problem is that one has to understand each
base model plus the combination strategy in order to understand the complete
model. Further, one cannot interpret one of the base models on its own to gain
insight into the model, but always has to check all interactions between the base
models.

One could also think of approaching globalization by the seemingly more
simple idea of separating the descriptive and predictive tasks by using the local
models only to present the dependencies in the data to the user, while the class
prediction of unseen examples is performed by an independent, high-accuracy
model. The problem here is that one cannot guarantee to the user that what he
understood about the data from the local patterns actually matches the way in
which the predictions are generated by the predictive model.

The goal of this paper is to globalize the local patterns while assuring that
there is a strict, well-defined correspondence between the set of independent
local models and the globalized model. The philosophy behind this approach is
that accuracy and interpretability are two aspects of the same problem and that
their solutions should be as independent as necessary, but as close as possible.

Several approaches to solve the problem of discovering and selecting local
models have been investigated, e.g. in [8] and [9]. The particular question of
globalization of local models has been addressed in [10], where attribute weights



are used to give a global insight into the classification process. Perhaps the
closest work to the one presented in this paper is [11], where trees of SVMs and
clustering is used to define a tree of local models.

3 Local Model SVMs

The critical part in globalization of local models is to guarantee that the com-
bined model adequately reflects the single local models. In particular, the prob-
lem is to integrate the τ -constraint with the goal of minimum error, which a
standard learner is not designed to do. This section will tackle this problem by
defining a new SVM-type classifier that integrates the information of a global
model, such that it combines the excellent performance of Support Vector Ma-
chines with a minimal disagreement from the set of local models.

Several approaches have been discussed in the literature in order to combine
the excellent understandability of a logical representation with a better general-
ization performance of numerical models. For example, [12] proposes to optimize
first order rules on numerical domains by using a gradient descend method to
optimize the discretization that is necessary to transform numerical data into
first-order representation. First-order rules are used as features for a numerical
learner in [13] by constructing a bit vector of the outputs of each rule. This
approach does not increase understandability, as the combination of the features
is completely unintelligible, but is well suited to tackle noise in the input data.
Similar approaches can also be found in [14] and [15].

In this paper, the local models will be expressed in propositional logic form
and will be learned by the JRip algorithm [16], which is a variant of RIPPER [17],
a well-known propositional logic rule set learner. However, the new algorithm
will not be based on any specific features of this learner, such that any learner
that returns a set of rules can be used. In particular, the rules can also be given
by a human expert. In fact, we will only need to assume that we are given the
local models in terms of prediction functions pi : X → {−1, 1}. Note that in
this paper we are not interested in optimizing the set of local models, e.g. by
finding a minimally redundant set; instead we are only interested in finding a
globalization of these models, and in particular mapping out the regions that
are not adequately modeled. Hence, in the following we will assume that there
exists a single local model function p : X → {−1, 1} that aggregates all local
models in a trivial way, e.g. by averaging, and seek to optimize this function.

Technically, the new method is based on Basis Pursuit [18], which is a method
for the sparse approximation of a real function f in terms of a set of basis
functions gi. There is no restriction on the form of the basis functions. The idea
is to generate a set of test points xi and find a linear combination

∑
i αigi of

the basis functions that approximates the target function on this test points as
closely as possible. To achieve sparseness, the 1-norm ||α||1 =

∑
i |αi| of the

parameter vector is added as a complexity term similar as in Support Vector
Machines. This norm is chosen because it will give much sparser result than
the 2-norm, but is computationally more tractable than the otherwise preferable



0-norm ||α||0 = #{i|αi 6= 0}. The criterion of sparseness will guarantee that
only the most informative basis functions will be chosen in the final function
approximation.

The new idea is to apply the same approach to a classification framework with
Support Vector Machines. Standard Support Vector Machines already achieve
good generalization performance by combining basis function gi(x) = K(xi, x)
given by the kernel centered at the training points xi. When the prediction p(x)
of a local model (or a set thereof) is added as another basis function, it should
already give a good prediction of the labels and hence be a very informative
feature, such that most of the other features can be ignored.

Remember that the standard SVM optimization task is given by

||w||2 + C

n∑

i=1

ξi → min

w.r.t.

∀n
i=1

yif(xi) ≥ 1 − ξi

∀n
i=1

ξi ≥ 0

where the decision function f has the form

f(x) =
∑

i

αiK(xi, x) + b.

To integrate the local model predictions p(x) into the SVM and to achieve
focus on the local errors, the form of the decision function is now changed to

f(x) = p(x) +
∑

i

αiK(xi, x)

=: p(x) + fnum(x)

where it is assumed that p(x) ∈ {−1, 1}. That is, we try to learn a kernel-based
function fnum that explains the difference between the local models captured
in p(x) and the optimal decision function f(x). This SVM formulation will be
called the Local Model SVM. The change in the decision function has two effects.
First, for any example (xi, yi) that is correctly classified by p it holds that

yif(xi) ≥ 1 − ξi

⇔ yi(p(xi) + fnum(xi)) ≥ 1 − ξi

⇔ yip(xi) + yifnum(xi) ≥ 1 − ξi

⇔ yifnum(xi) ≥ −ξi

which is automatically fulfilled when fnum(xi) = 0 and hence for the examples
correctly predicted by p the optimal solution is w = 0. This relaxation of the
constraints on f from |yf(x)| ≥ 1 to |yf(x)| ≥ 0 automatically leads to a drastic
reduction in the number of support vectors on the already correctly classified
examples, which will be the majority of the examples for any reasonable p.



Additionally, the constant b has been removed from the decision function. This
has a special effect for locally concentrated basis functions such as the radial
basis kernel function

fγ,xi
(x) = e−γ||xi−x||2.

Any nonzero term b would require that in order to meet fnum(xi) ≥ 0 there need
to be basis functions with nonzero α if there are examples such that byi < 0.
Hence, setting b = 0 leads to a sparse decision function on the region correctly
predicted by p. It follows further that only errors of p lead to a value of fnum(x)
that is significantly different from 0 and hence the absolute value of fnum may
give an indication of the error probability of p.

Using the standard technique of Lagrangian multipliers it can easily be seen
that the dual formulation of the new SVM problem is given by

W (α) =

n∑

i,j=1

αiαjyiyjK(xi, xj) −

n∑

i=1

(1 − yip(xi))αi → min

subject to: ∀n
i=1

0 ≤ αi ≤ C

In particular, the removal of b leads to the removal of the linear constraint∑
yiαi = 0 and hence to a simpler optimization problem.
Figure 2 shows an example data set for the local model SVM. The one-

dimensional data set is given by the points at y = ±1, while the prediction
of the logical model p – in this case a simple threshold rule – is plotted in
between. Figure 3 additionally shows the prediction of the local model SVM,
more precisely the function fnum(x). The training points where the prediction
of the logical rule p(x) is false are marked as crosses. Notice that fnum drops to
zero outside the error region of p and that for all points yi(p(xi)+fnum(xi)) ≥ 1
holds, which implies that the local model SVM fulfills the margin property of
the standard SVM, which is imperative for good generalization performance.
However, it must be noticed that the generalization property of the local model
SVM, in particular the susceptibility to overfitting, is directly dependent on the
quality of the set of local models as expressed by p. A set of completely overfit
local model will lead to a zero modeling error and hence to a overfit combined
model. This risk can for example be reduced by training p and the local model
SVM on different data sets. The main idea of this paper, however, is that the
best guard against overfitting is allowing the user to check the local models in
p to get some additional evidence on the plausibility of the results from outside
the actual data set.

In order to meet the τ -constraint the local decision function

f(x) = p(x) + fnum(x)

can easily be replaced by

fλ(x) = p(x) + λfnum(x)

where 0 ≤ λ ≤ 1 and λ is reduced until the disagreement rate between fλ and p

drop below τ . As fnum reaches its maximum for points mispredicted by p, this
new function will still be maximally correct.
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Fig. 2. Data for Local Model SVM

Assuming that higher absolute values of fnum are indicative of a higher prob-
ability of an error of p, one can use probabilistic calibration to transform |fnum|
into an estimator of the error probability of p. In this paper Isotonic Regression
[19] is used because it does not need any assumptions about the distribution of
the errors except the assumption of a monotonic dependency.

4 Experiments

The following experiments compare the local model SVM against two baseline
techniques. As the local model SVM is principally a linear combination of the
local models in p and a SVM-type classifier, the most direct solution would be to
learn a linear model on the outputs of p and a standard SVM. This approach is
an instance of Stacking [20]. It is straight-forward to modify the stacked classifier

s(x) = Ap(x) + Bfsvm(x)

into a classifier
sλ(x) = Ap(x) + λBfsvm(x)
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Fig. 3. Prediction of Local Model SVM

that adheres to the τ -constraint.

On the other hand, the stacked classifier does not incorporate any local infor-
mation present in the classification errors of p. This can be changed by removing
all examples that are correctly classified by p from the SVMs training set. With
this modified SVM classifier fsvm,rm one defines the stacked classifier

rλ(x) = Ap(x) + λBfsvm,rm(x)

accordingly to sλ.

The following table compare the errors of the local model SVM, stacking and
reduced stacking on a set of UCI data sets [21] plus some additional real-world
data sets (business, medicine, insurance and garageband). All results reported
in this paper have been obtained using 10-fold cross-validation.

The JRip classifier was used to a set of local models p. In order to simulate
incomplete information in the local models, the most specific rules in each rule
set were removed, such that on the average only half of the rules found by JRip
were used (as the more general rules cover more examples, still most of the
examples were classified by their original JRip rules). The local threshold was



set to τ = 0.1. The significance values for the error differences at levels α = 0.05
and α = 0.01 are also given.

Name LMSVM Stacking L ≤ S Red. Stacking L ≤ R

business 0.216 0.255 o 0.293 ++
covtype 0.241 0.264 + 0.274 ++
diabetes 0.245 0.253 o 0.27 ++
digits 0.027 0.003 −− 0.027 o

physics 0.409 0.417 + 0.417 +
ionosphere 0.137 0.105 − 0.174 ++
liver 0.327 0.292 − 0.33 o

medicine 0.248 0.247 o 0.254 o

mushroom 0.482 0.482 o 0.482 o

promoters 0.372 0.391 o 0.391 o

insurance 0.03 0.068 ++ 0.07 ++
balance 0.247 0.219 o 0.257 o

dermatology 0.317 0.273 o 0.317 o

iris 0.013 0.02 o 0.013 o

voting 0.233 0.207 − 0.233 o

wine 0.14 0.175 o 0.14 o

breast 0.078 0.086 o 0.099 o

garageband 0.298 0.316 + 0.337 ++

Comparing the local model SVM with stacking we can see that both perform
significantly better than the other on 4 data sets, so it is safe to say that both
perform equally well. Indeed, a Wilcoxon signed rank test finds no significant
difference between both approaches. In comparison to reduced stacking, the local
model SVM performs signifcantly better on 7 data sets and is never worse. In this
case, a Wilcoxon signed rank test confirms that LMSVM performs significantly
better than reduced stacking with p = 0.030.

We have seen that LMSVM and Stacking perform equally well in terms of
classification accuracy, but what about the goal of identifying local models? To
investigate whether the local classifier fnum holds information about the errors of
p, we calibrate it into a probabilistic classifier. In the following table, the mean
squared error (Brier score) between the predicted probability and the actual
occurrence of an error is given.



Name LMSVM Stacking L ≤ S Red. Stacking L ≤ R

business 0.187 0.228 + 0.236 ++
covtype 0.196 0.202 o 0.226 ++
diabetes 0.193 0.196 o 0.202 o

digits 0.027 0.027 o 0.027 o

physics 0.227 0.263 ++ 0.257 ++
ionosphere 0.123 0.143 + 0.155 ++
liver 0.226 0.223 o 0.233 o

medicine 0.187 0.186 o 0.187 o

mushroom 0.086 0.336 ++ 0.383 ++
promoters 0.34 0.275 −− 0.303 o

insurance 0.014 0.034 ++ 0.033 ++
balance 0.186 0.214 + 0.218 o

dermatology 0.021 0.194 ++ 0.195 ++
iris 0.016 0.014 − 0.014 −
voting 0.049 0.162 + 0.159 ++
wine 0.129 0.124 o 0.137 o

breast 0.078 0.111 ++ 0.08 o

garageband 0.236 0.241 o 0.284 ++

We can see that the local model SVM has a significantly lower mean squared error
than the other two methods on 9 of the data sets and is significantly worse on
only 2 data sets for stacking and only 1 for reduced stacking. A Wilcoxon signed
rank test confirms that LMSVM has significantly lower error than Stacking with
a p-level of 0.010 and has significantly lower error than Reduced Stacking with
a p-level of 0.002. This shows that for the local model SVM |fnum| carries much
information about the error probability of p. This means in particular that the
local model SVM will perform well for any value of τ , because selecting a value
of λ is equivalent to cutting of the influence of the points with lowest values of
|fnum|, which are least likely to be mispredicted by p.

To validate whether the local model SVM also leads to a sparser solution,
the following table compares the number of Support Vectors for the standard
SVM (as used in stacking) and the local model SVM.



Name SV Local SV All L ≤ A

business 65.5 92.2 ++
covtype 618.8 746.5 ++
diabetes 349.9 388.1 ++
digits 42.9 146.9 ++
physics 717.4 801.6 ++
ionosphere 110.8 119.3 o

liver 194.3 252.6 ++
medicine 592.6 577.8 o

mushroom 999.9 999.4 −
promoters 78.7 95.4 +
insurance 174.8 178.3 o

balance 117.5 125.9 +
dermatology 100.1 116.9 o

iris 83.5 12.1 −
voting 134.4 181.9 +
wine 35.7 128.9 ++
breast 68.9 86.8 ++
garageband 734.8 807.2 ++

We can see that on 12 of the data sets, the local model SVM returns significantly
less Support Vectors than the standard SVM. It should also be noted that the
kernel parameter γ of both SVMs was selected to optimize the classification
performance of the standard SVM. An optimization of γ for the local model
SVM is likely to achieve even better results.

5 Conclusions

Globalization of local models is an important tasks that bridges the gap between
the understandability and interestingness of local models, and the construction
of a highly performant global classifier, which necessarily needs to combine and
integrate multiple, possibly redundant or contradicting local models. In this
paper, such an approach was presented which both effectively combines local
models into a single prediction, follows the local models as closely as necessary
using the τ−constraint, and can be used to identify regions of the input space
in need of additional local models.

In conclusion, the Local Model SVM perform equally well as the standard
approach of Stacking, but gives far superior information about the local models
errors compared to the competing solutions and is hence very well suited for
extracting sparse local models and local patterns at the same time without any
loss of accuracy.

Future work will concentrate on identifying the individual contributions of
each local model more closely, instead of aggregating all local models into a
single function p as in this approach. This will hopefully provide some valuable
feedback to the local model learning algorithm.
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