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Abstract. In the context of binary classification, we analyze a decision
rule classifier based on boosting. We consider different loss functions
and minimization techniques along with shrinking and sampling. The
results show that minimization techniques influence rule construction,
particularly rule coverage. The performance of the classifier seems not to
be highly affected by the chosen loss function, and the crucial element
is proper selection of shrinking and sampling method. The experiment
shows the algorithm presented here is competitive to well-known decision
rule learners such as SLIPPER, LRI and RuleFit.

1 Introduction

We consider a learning algorithm based on decision rules for solving binary
classification problems. Such decision rules are simple and interpretable logical
patterns of the form: “if condition then decision”. They can be treated as simple
classifiers that give a constant response to examples satisfying the condition part,
and abstain from the response for other examples.

The problem of induction of decision rules has been widely considered in
machine learning. The most popular algorithms were based on sequential cov-
ering [1–3]. Recently, another approach to rule induction receives increasing at-
tention. In this approach rules are built using boosting [4] or forward stagewise
additive modeling [5]. Such an approach can be seen as a generalization of se-
quential covering, because it approximates the solution of the prediction task by
sequentially adding new rules to the ensemble without adjusting those that have
already been added. Each rule is fitted by concentrating on examples which were
hardest to classify correctly by the rules already present in the ensemble. This is
accomplished in terms of minimization of the loss function on the training set.
There are several loss functions commonly used in boosting, the most popular
being exponential and logit loss functions. A typical procedure for building a
single rule resembles generation of decision trees, but only one path from the
root to the leaf is considered. The growth of the rule is controlled by a measure
that depends on the chosen loss function. In case of exponential loss, one can
give an exact formula of the loss minimizer at a given iteration, which deter-
mines the measure to be used. The same applies to a formula determining the



response (decision) of the rule. For other loss functions like logit loss, a specific
minimization technique has to be applied. The most popular minimization tech-
niques are gradient descent [6] and gradient boosting [7] relying on fitting the
negative gradient of the loss function on the training set.

In this paper, we introduce an algorithm for learning an ensemble of decision
rules (referred to as ENDER) that can be used with different loss functions and
minimization techniques. It consistently uses the same measure (value of the em-
pirical risk) at all stages of the learning procedure: setting the best conditions,
stopping the rule’s growth and determining the response (decision) of the rule;
no additional measures or tools (e.g., impurity measures, pruning procedures)
are employed. We also take into account other issues, such as shrinking base
learners towards priors and sampling from the whole training set when a single
base classifier is built. We thoroughly consider how the learning process and the
prediction accuracy is influenced by the characteristic of the loss function, min-
imization technique, the number of rules, resampling and amount of shrinkage.
Up to our knowledge, such analysis has not been yet conducted in the context of
decision rules before, however, several rule ensemble learning algorithms exist:
SLIPPER [8], LRI [9], RuleFit [10] and MLRules [11]. All these algorithms are
quite similar and fall into our framework. The main difference is in the chosen
loss function and minimization technique.

1.1 Main Contribution

We verified empirically a performance of ensemble of decision rules with three
different loss functions: exponential, logit and sigmoid. We show that the choice
of the loss function has only a little impact on the performance.

From our theoretical analysis, it follows that the minimization technique in-
fluences the coverage of the rule (number of covered examples). We consider four
different minimization techniques, where one of them, constant-step minimiza-
tion, is particularly tailored for decision rules. It relies on building a rule for a
fixed constant value of rule response, the step length in the optimization process.
We show that the coverage of the rule can be controlled by the step length. When
the length approaches zero, this technique is equivalent to gradient descent [6].
We also show the relation between gradient descent and gradient boosting [7] in
the context of decision rules. It follows from the analysis that gradient descent
produces the most general rules (i.e., rules with the highest coverage). Our theo-
retical results are also confirmed by the experiment. There is, however, no clear
picture which minimization technique gives the best performance, but it seems
that gradient boosting is outperformed by the other methods.

We also show experimentally that the main impact on improving the per-
formance is the use of a proper shrinkage and sampling technique. This can be
regarded as a type of regularization. This result is rather common for boosting
algorithms, however, it is interesting, what parameters of shrinkage and sam-
pling are the best in the case of rules. Moreover, in the introduced algorithm, we
compute a response of the rule on all training examples, independently on the
fact whether a rule was built using a subsample or not. This usually decreases



the response, so it plays also the role of regularization, and avoids overfitting
the rule to the training set. These three elements (shrinking, sampling, and cal-
culating response of the rule on the whole training set) constitute an alternative
to pruning used very often in induction of decision rules.

1.2 Contents

The paper is organized as follows. In Section 2 we formulate the binary classi-
fication problem. Section 3 outlines the introduced algorithm. The theoretical
analysis with respect to different loss functions and minimization techniques is
given in Sections 4 and 5. Section 6 discusses the connections to other rule in-
duction algorithms. Section 7 contains results of large experiment on artificial
data and comparison to the other methods. Section 8 concludes the paper.

2 Problem Statement

We consider a binary classification problem in which the aim is to predict an
unknown value of an attribute y ∈ {−1, 1} of an object using known joint values
of other attributes x = (x1, x2, . . . , xn). Objects for which y = 1 are often called
“positive examples”, where the others are called “negative examples”. The task
is to find a function f(x) that predicts accurately the value of y. The accuracy
of a single prediction is measured by the loss function L(y, f(x)) which is the
penalty for predicting f(x) when the actual value is y. The overall accuracy
of function f(x) is measured by the expected loss (Bayes risk) over the joint
distribution P (y,x):

R(f) = EyxL(y, f(x)).

Therefore, the optimal (risk-minimizing) decision function (or Bayes optimal
decision) is given by:

f∗ = arg min
f

EyxL(y, f(x)).

Since P (y,x) is generally unknown, the learning procedure uses only a set of
training examples {yi,xi}N1 to construct f to be the best possible approximation
of f∗. Usually, this is performed by minimization of the empirical risk :

Remp(f) =
1
N

N∑
i=1

L(yi, f(xi)),

where f is chosen from a restricted family of functions. In the following, we use
the linear combination of decision rules.

In binary classification, loss functions can be defined in terms of the mar-
gin. Let us assume that f(x) ∈ R. Then, the margin is defined as yf(x). Since
y ∈ {−1, 1}, positive margin means correct classification, and negative – mis-
classification. The most popular loss is then the so-called margin 0-1 loss:

L0−1(yf(x)) = I(yf(x) < 0), (1)



where I(a) is an indicator function (i.e., I(a) = 1 if a is true, otherwise I(a) = 0).
The expected value of this loss function is simply a misclassification error of f(x)
defined as P (yf(x) < 0). That is why Bayes optimal decision has the following
form:

f∗(x) = arg min
f(x)

Ey|xL0−1(yf(x)) = sgn(2 Pr(y = 1|x)− 1). (2)

It follows that by minimizing the margin 0-1 loss function, one estimates a region
in the attribute space, in which the positive class is observed with the higher
probability.

There is a problem with minimization of function (1), since it is neither con-
vex, nor differentiable. Moreover, it would be desired that magnitude of yf(x)
denoted the credibility of assigning an object to a given class. Therefore, in-
stead of margin 0-1 loss, convex surrogates (upper-bounding the 0-1 loss) are
commonly used, such as the exponential and the logit loss, which makes the
minimization process easier to cope with. Exponential loss is defined as:

Lexp(yf(x)) = exp(−yf(x)). (3)

This loss function is (implicitly) used in AdaBoost [4]. This fact was firstly
discovered by [12]. Logit loss:

Llog(yf(x)) = log(1 + exp(−2yf(x))) (4)

has been applied in LogitBoost [12] and also in Gradient Boosting [7]. These two
loss functions have the same Bayes optimal decision:

f∗(x) =
1
2

log
Pr(y = 1|x)

Pr(y = −1|x)
, (5)

which is the logit transform of the conditional probabilities. Therefore, mini-
mization of these loss functions on the training set can be seen as estimation of
conditional probabilities Pr(y = 1|x). Sign of f(x) estimates in turn the class
with higher probability.

Another possibility is to use the sigmoid loss that is a continuous approxi-
mation of the 0-1 loss:

Lsigm(yf(x)) =
1

1 + exp(yf(x))
. (6)

Although not convex, it is differentiable. Bayes optimal decision for (6) is rather
aberrant:

f∗(x) =

+∞ Pr(y = 1|x) > 1
2 ,

−∞ Pr(y = −1|x) < 1
2 ,

arbitrary otherwise.

There are theoretical justifications for using this loss function. It is shown in [6]
that the upper bound of the misclassification error for such a loss function is
tighter than the bound obtained by [13]. Moreover, contrary to the exponential
and the logit loss functions, this loss function is bounded within the range (0, 1),
and is therefore less sensitive to outliers.



3 Learning an Ensemble of Decision Rules

In this section, we describe the general scheme of learning an ensemble of decision
rules. We start with the definition of a single rule, define the ensemble and outline
the learning procedure.

Let Xj be a value set of attribute j ∈ {1, . . . , n} (i.e., the set of all possible
values of attribute j). Condition part of the rule consists of a conjunction of
elementary expressions of the general form xj ∈ Sj , where xj is the value of
object x on attribute j and Sj is a subset of Xj . In particular, we assume
that elementary expressions are in the form xj ≥ sj , xj ≤ sj , for quantitative
attributes, and xj = sj , xj 6= sj , for qualitative attributes, where sj is taken
from a value set of j-th attribute. Let Φ be the set of elementary expressions
constituting the condition part of the rule, and Φ(x) be a function indicating
whether an object x satisfies the condition part Φ, i.e. Φ(x) = I(x ∈ Φ). In other
words, Φ(x) defines an arbitrary axis-parallel region in the attribute space. We
say that a rule covers an object if Φ(x) = 1. The decision (response), denoted
by α, is a real non-zero value assigned to the region defined by Φ. Therefore, we
define a decision rule as:

r(x) = αΦ(x).

Note that the decision rule takes only two values, r(x) ∈ {α, 0}, depending
whether x satisfies the condition part or not. We assume that the classification
function is a linear combination of M decision rules:

fM (x) = α0 +
M∑
m=1

rm(x),

where α0 is a constant value, which can be interpreted as a default rule, covering
the whole attribute space. Classification is made simply by computing sgn(f(x)).

The construction of an optimal combination of rules minimizing the empir-
ical risk is a hard optimization problem. We therefore follow forward stagewise
additive modeling that results in an iterative procedure in which rules are added
one by one. We start with the default rule defined as:

α0 = arg min
α

N∑
i=1

L(yi, α). (7)

In each subsequent iteration, a new rule is added by taking into account pre-
viously generated rules. Let fm−1(x) be a classification function after m − 1
iterations, consisting of the first m − 1 rules and the default rule. In the m-th
iteration, a decision rule can be obtained by solving:

rm(x) = arg min
Φ,α

N∑
i=1

L(yi(fm−1(xi) + αΦ(xi))). (8)

Since the exact solution of (8) is still computationally hard, we proceed in two
steps.



Step 1. Find Φm by minimizing a functional Lm(Φ) in a greedy manner:

Φm = arg min
Φ
Lm(Φ). (9)

The particular form of this functional is derived from (8) and depends on the
chosen loss function and minimization technique (see Section 5). The greedy
procedure used for finding Φm resembles the way the decision trees are generated,
but we look for only one path from the root to the leaf. At the beginning, Φm is
empty and in each subsequent step an elementary expression xj ∈ Sj is added
to Φm until Lm(Φm) cannot be decreased. Let us underline that, contrary to the
generation of decision trees, a minimal value of Lm(Φ) is a natural stop criterion.

Step 2. Find αm, the solution to the following line-search problem:

αm = arg min
α

N∑
i=1

L(yi(fm−1(xi) + αΦm(xi)). (10)

In several cases the computation of αm is straightforward, because analytical
solution for (10) can be given, otherwise, an approximate solution has to be
found (see Section 4).

Regularization. As pointed out in many places (see, for example, [5]), a regular-
ized classifier can achieve much better results. The form of regularization which
is particularly useful is the L1-penalty, also called lasso. In the case of rule en-
semble, this would lead to the empirical risk minimization taking into account
all possible rules with additional term

∑
m |αm|. To approximate a solution of

such regularized problem, one can follow a strategy that is called shrinkage [5].
It consists in shrinking a newly generated rule rm(x) = αmΦm(x) towards rules
already present in the ensemble:

fm(x) = fm−1(x) + ν · rm(x),

where ν ∈ (0, 1] is a shrinkage parameter that can be regarded as controlling
the learning rate. For small ν, one can obtain a solution that is close to the
regularized one. Such an approach works even better, when weak learners are
uncorrelated. That is why, the procedure for finding Φm works on a subsample
of original data that is a fraction of η training examples, drawn without replace-
ment [14]. Such an approach leads to a set of rules that are more diversified and
less correlated. Moreover, finding Φm on a subsample reduces the computational
complexity. Note, however, that small ν requires larger M . Independently on the
fact whether Φm was found using a subsample or not, value of αm is calculated
on all training examples in the introduced algorithm. This usually decreases
|αm|, so it plays also the role of regularization, and avoids overfitting the rule to
the training set. These three elements (shrinking, sampling, and calculating αm
on the whole training set) constitute a competitive technique to pruning. Our
experiments showed that it significantly improves the accuracy of the classifier.

Algorithm 1 (referred to as ENDER) outlines the whole procedure for con-
structing an ensemble of decision rules.



Algorithm 1: Ensemble of decision rules – ENDER

input : set of training examples {yi,xi}N1 ,
L(yx) – loss function,
M – number of decision rules to be generated,
Lm(Φ) – minimization technique that works on
a fraction η of training examples, drawn without replacement,
ν – shrinkage parameter.

output: default rule α0, ensemble of decision rules fm(x).

α0 = arg minα
∑N
i=1 L(yiα)

f0(x) = α0;
for m = 1 to M do

Φm = arg minΦ Lm(Φ)
αm = arg minα

∑N
i=1 L(yi(fm−1(xi) + αΦm(xi)))

rm(x) = αmΦm(x)
fm(x) = fm−1 + ν · rm(x)

end

4 Rule Response Calculation

In this section, we review methods of solving the line search problem (10) to
determine the decision αm of the rule rm, when the condition part Φm of the
rule is already known. Depending on the loss function used, one can obtain
analytical solution or do simple numerical optimization.

For the exponential loss function, the solution of (10) is given by:

αm = arg min
α

N∑
i=1

e−yi(fm−1(xi)+αΦm(xi)) =
1
2

log

∑
yi=1 Φ(xi)e−fm−1(xi)∑
yi=−1 Φ(xi)efm−1(xi)

. (11)

In case of the logit loss there is no analytical solution to (10). To speed up the
computations, instead of numerically solving the line search problem, a single
Newton-Raphson step is performed, similarly as in [7]:

αm = −
∑
Φ(x)=1

∂
∂αLlog(yi(fm−1(x) + αΦm(x)))∑

Φ(x)=1
∂2

∂α2Llog(yi(fm−1(x) + αΦm(x)))

∣∣∣∣
α=0

. (12)

Sigmoid loss is another loss function for which no analytical solution to (10)
exists. Moreover, due to non-convexity of this function one should avoid the
Newton-Raphson method. Nevertheless, to speed up the computations, we do
not solve the line search problem, but instead we perform one step of a small
constant length γ along the direction of the negative gradient.

5 Minimization Techniques

In this section, we derive from (8) the form of the functional Lm(Φ) minimized
in (9). There have been different minimization techniques considered for this



task within boosting [6, 7], some of which will be reviewed here in the context
of decision rules. As we show, the minimization technique highly influences the
coverage of a rule (i.e., number of covered examples). In particular, we introduce
a technique that relies on building a rule for a fixed constant value of rule
response. This constant value is a step in the minimization procedure. We prove
that the coverage of the rule can be controlled by the step length.

Simultaneous minimization. Simultaneous minimization [15] of Φ and α in for-
mula (8) is possible only for the exponential loss, since only for this function the
exact solution to (10) is known. One puts the optimal value of αm given by (11)
into (8), and obtains expression Lm(Φ) depending only on Φ:

Lm(Φ) = 2×

√√√√(∑
yi=1

Φ(xi)w
(m)
i

)( ∑
yi=−1

Φ(xi)w
(m)
i

)
+

∑
Φ(xi)=0

w
(m)
i , (13)

where w
(m)
i = e−yifm−1(xi) can be treated as the weight of the i-th training

example in the m-th iteration.

Gradient Descent. This technique, in contrary to the simultaneous minimization,
can be used with any differentiable loss function [6]. It approximates (8) up to
the first order with respect to α:

rm(x) ' arg min
Φ,α

N∑
i=1

(
L(yifm−1(xi)) + yiαΦ(xi)w

(m)
i

)
, (14)

where

w
(m)
i = −∂L(yifm−1(xi))

∂(yifm−1(xi))
.

It is easy to see that the optimal solution with respect to Φ is obtained by
minimizing:

Lm(Φ) = −
∑

Φ(xi)=1

yiαw
(m)
i , (15)

since
∑N
i=1 L(yifm−1(xi)) is constant at a given iteration, thus does not change

the solution. Let
R+ = {i: Φ(xi) = 1 ∧ αyi > 0}

denote a set of examples “correctly classified” by the rule (for yi = 1, α should
be > 0, and for yi = −1, α should be < 0). Analogously,

R− = {i: Φ(xi) = 1 ∧ αyi < 0}

denotes a set of examples “misclassified” by the rule. Then, minimization of (15)
is equivalent to minimization of:

−
∑
i∈R+

w
(m)
i +

∑
i∈R−

w
(m)
i , (16)



because magnitude |α| does not change a solution. Then, in the case of learning
with decision rules, one can prove the following:

Theorem 1. Minimization of (14) is equivalent to minimization of:

L(Φ) =
∑
i∈R−

w
(m)
i +

1
2

∑
Φ(xi)=0

w
(m)
i , (17)

Proof. Let us remark that

∑
i∈R+

w
(m)
i =

N∑
i=1

w
(m)
i −

∑
i∈R−

w
(m)
i −

∑
Φ(xi)=0

w
(m)
i . (18)

Since
∑N
i=1 w

(m)
i is constant at a given iteration, it can be added or subtracted

from (16) without any change in the optimization process. Thus, we finally obtain
that a subject to minimize is:∑

i∈R−

w
(m)
i +

1
2

∑
Φ(xi)=0

w
(m)
i ,

as claimed. �

This theorem has a nice interpretation: the first term of (17) corresponds to
examples “misclassified” by the rule, while the second term – to examples which
are not classified by the rule at all. Value 1

2 plays the role of a penalty for
abstaining from classification and establishes a trade-off between not classified
and misclassified examples.

Let us also remark that minimization of (16) could be reformulated to the
minimization of the following term:

−

∣∣∣∣∣∣
∑

Φ(xi)=1

yiw
(m)
i

∣∣∣∣∣∣ , (19)

because a sing of α may be established afterwards. This formulation will serve
us the connection with gradient boosting.

Gradient boosting. This technique [7] was originally introduced as minimization
of the squared-error between base classifier response and the negative gradient
of the loss function, what can be expressed in the case of rules as:

rm(x) ' arg min
Φ,α

( ∑
Φ(xi)=1

(
yiw

(m)
i − α

)2

+
∑

Φ(xi)=0

(
yiw

(m)
i

)2
)
. (20)

The following theorem establishes the connection between gradient descent and
gradient boosting.



Theorem 2. Minimization of (20) is equivalent to minimization of:

Lm(Φ) = −

∣∣∑
Φ(xi)=1 yiw

(m)
i

∣∣√∑N
i=1 Φ(xi)

, (21)

which is equivalent to (19) normalized by the square root of the rule coverage.

Proof. The minimization problem defined in (20) can be solved for:

α =

∑
Φ(xi)=1 yiw

(m)
i∑N

i=1 Φ(xi)
, (22)

and by putting (22) into (20), and performing some simple calculations, we
obtain:

rm(x) ' arg min
Φ

 N∑
i=1

(
yiw

(m)
i

)2

− 1∑N
i=1 Φ(xi)

( ∑
Φ(xi)=1

yiw
(m)
i

)2
 .

After removing the first term under arg min, which is constant, and taking the
square root of the second term (which does not affect the minimization) we get:

−

∣∣∣∑Φ(xi)=1 yiw
(m)
i

∣∣∣√∑N
i=1 Φ(xi)

,

as claimed.

Theorem 2 suggests that gradient boosting results in more specific rules than
gradient descent, covering smaller regions in the attribute space.

Constant-step minimization. Finally, we present a novel technique, particularly
tailored for decision rules, that consists in minimization of the loss function with
the constant step. In other words, we restrict α in (8) to α ∈ {−β, β}, where β
is a fixed parameter of the algorithm. Then, (8) becomes:

rm(x) = arg min
Φ,±β

( ∑
Φ(xi)=1

L(yi(fm−1(xi)± β)) +
∑

Φ(xi)=0

L(yifm−1(xi))
)
. (23)

The above formula can be used with any loss function, since it involves calculat-
ing two loss values at points fm−1(xi)±β. It is also natural for sigmoid loss (6),
for which we approximate (10) by a constant step γ along the direction of the
negative gradient.

In the case of the exponential loss, one can prove an interesting theorem
which clearly shows, that this approach generalizes gradient descent technique.



Theorem 3. Solution of (23) for exponential loss (3) and step length β is equiv-
alent to minimization of

Lm(Φ) =
∑
i∈R−

w
(m)
i + `

∑
Φ(xi)=0

w
(m)
i , (24)

where R− is defined as before, and:

w
(m)
i = e−yifm−1(xi), ` =

1− e−β

eβ − e−β
, β = log

1− `
`

.

Proof. It follows from putting (3) into (23):

rm(x) = arg min
Φ,±β

∑
i∈R+

w
(m)
i e−β +

∑
i∈R−

w
(m)
i eβ +

∑
Φ(xi)=0

w
(m)
i

 . (25)

Since
∑
i∈R+

w
(m)
i =

∑N
i=1 w

(m)
i −

∑
i∈R− w

(m)
i −

∑
Φ(xi)=0 w

(m)
i , one can mini-

mize:

Lm(Φ) = (eβ − e−β)
∑
i∈R−

w
(m)
i + (1− e−β)

∑
Φ(xi)=0

w
(m)
i + e−β

N∑
i=1

w
(m)
i . (26)

The last element does not change the solution, so it is sufficient to minimize the
first two terms. Moreover, dividing (26) by (eβ − e−β) we obtain:

Lm(Φ) =
∑
i∈R−

w
(m)
i + `

∑
Φ(xi)=0

w
(m)
i ,

where

` =
1− e−β

eβ − e−β
β = log

1− `
`

.

as claimed. �

It is easy to see that for β > 0, ` ∈ [0, 0.5). Expression (24) has a similar
interpretation as (17), but with varying value of `. Increasing ` (or decreasing
β) results in more general rules, covering more examples. For β → 0 we get a
gradient descent technique applied to exponential loss. This means that gradient
descent produces the most general (in the sense of coverage) rules.

For other loss functions, one can prove the following theorem by expanding
L(y(f(x)± β)) with respect to ±β up to the second order.

Theorem 4. Minimization of (23) for any twice differentiable loss function
L(yf(x)) and any β is equivalent to the minimization of:

Lm(Φ) =
∑
i∈R−

w
(m)
i +

1
2

∑
Φ(xi)=0

(
w

(m)
i − βv(m)

i

)
, (27)



where R− is defined as before, and

w
(m)
i = −∂L(yifm−1(xi))

∂(yifm−1(xi))
, v

(m)
i =

1
2
∂2L(yifm−1(xi) + yiγ)
∂(yifm−1(xi) + yiγ)2

, (28)

for some γ ∈ [0, β].

Proof. It follows from Taylor’s expansion of L(y(f(x)± β)) with respect to ±β
up to the second order. The formula for Lm(Φ) is then:

Lm(Φ) =
∑
i∈R+

(
Li + βw

(m)
i + β2v

(m)
i

)
+
∑
i∈R−

(
Li − βw(m)

i + β2v
(m)
i

)
+
∑

Φ(xi)=0

Li,

where Li = L(yifm−1(xi)). After some simple transformations similar to that
from the proof of Theorem 3, one proves the thesis. �

As above, β establishes a trade-off between misclassified and unclassified exam-
ples. Values w(m)

i are always positive, since the loss function is decreasing. If
the loss function is convex (e.g., exponential or logit loss) v(m)

i is also positive,
therefore increasing β decreases the penalty for abstaining from classification,
which leads to smaller and more specific rules. Notice, that for β → 0 expression
(27) boils down to the gradient descent technique. The situation changes if the
loss function is not convex, which is the case of a sigmoid loss. Sigmoid loss is
convex for yf(x) > 0 and concave for yf(x) < 0; therefore, as β increases, un-
covered examples satisfying yifm−1(xi) > 0 (“correctly classified”) are penalized
less, while the penalty for uncovered “misclassified” examples (yifm−1(xi) < 0)
increases. This leads to the following conclusion: although the rule covers only
a part of the examples, with respect to uncovered examples it still tries to make
a small error; remark that the weights of the uncovered examples depend on
the curvature of the function (second derivative) rather than on the slope (first
derivative).

6 Discussion and Related Works

Let us relate ENDER to existing algorithms, starting with SLIPPER [8]. This
is the first boosted rule learner. It was originally introduced as an instance of
AdaBoost with confidence-rated predictions [15]. This corresponds to ENDER
solving (11) and (13). The difference is that SLIPPER uses pruning when gen-
erating a single rule and ENDER uses shrinkage and resampling instead, with
rule response calculated over all training examples. The latter approach results
in higher accuracy as demonstrated later.

LRI uses a specific reweighting schema (cumulative error), similar to Breiman’s
Arc-xf algorithm [16]. For the two-class problem, however, this method can also
be explained in the context of the loss function minimization, as it was done
in [6] for Arc-xf. It follows that LRI minimizes polynomial loss function by gra-
dient descent technique. Let us also point out that a single rule in LRI is a



bit more complex in comparison with those generated by other algorithms, be-
cause the rule is a DNF-formula, i.e., disjunction of conjunctions of elementary
expressions, instead of a single conjunction.

MLRules [11] are derived from the maximum likelihood principle, but can
also be seen as minimization of the logit loss (4) by a gradient descent technique.
They are also distinguished by elegant generalization to multi-class problems.

The main difference between RuleFit [10] and the above algorithms is that
this algorithm does not generate decision rules directly. First, decision trees are
used as base classifiers, and then in the second phase of the algorithm, rules are
produced from the resulting trees. Finally, a rule ensemble is fitted by gradient
directed regularization that aims at selecting the most relevant rules. There is
also a possibility to include in this fitting procedure original attributes as basis
functions to complement the rule ensemble with a linear part. RuleFit can utilize
a variety of loss functions, because it uses gradient boosting technique for fitting
trees. Classification problems are originally solved using squared-error ramp loss.

Because RuleFit uses decision trees as base classifiers, this is a right place
to discuss the difference between tree-based and rule-based ensembles. The first
difference is that there exists a natural stop criterion for rule construction. This
is just the minimal value of Lm(Φ) that takes into account the trade-off between
covered and uncovered training examples. In case of decision trees, one has to
define several additional parameters, such as number of terminal nodes, minimal
number of training examples in a terminal node, or to perform pruning. The
output of the ensemble of decision trees and decision rules is quite similar. For
both, this is a linear combination of regions Φ(x) in the attribute space. The
difference is that in the case of rules, each region defined by Φ(x) is built to be
optimal, taking into account all previously generated rules. This is not the case
of decision trees, where in each iteration several regions are identified. Moreover,
using rules one can generate regions that are hardly obtained by decision trees.

At the end, let us relate boosted rules to sequential covering. This approach
relies on learning a rule that covers a part of given training examples, removes the
covered examples from the training set and repeats this step until no examples
remain. SLIPPER is often referred to as weighted sequential covering, because
the examples are not removed totally but their weights decrease (or increase in
the case of misclassification). It is also easy to show that sequential covering can
be simulated by ENDER. Let us consider a simple heuristic that covers examples
from one class only. Moreover, let us use the margin 0-1 loss defined by (1). For
such a setting, the value of the loss function decreases down to 0 for all correctly
covered training examples and there is no need for another rule to cover them
again. This corresponds to removing such objects from the training set.

7 Experimental Results

We perform an experiment in two parts. In the first part, we exhaustively test
ENDER with different settings on artificial data and draw conclusions about the
values of the parameters. In the second part, we compare four variants of ENDER



with existing rule ensemble learning methods: SLIPPER, LRI and RuleFit. The
comparison is made on the real datasets taken from the UCI repository [17].

7.1 Artificial Data

Let us briefly describe how the artificial data were generated. To this end, exam-
ples x ∈ Rn were drawn according to the normal distribution, x ∼ N(0, I), where
I is a unit matrix of size n. We assume that the “target” function h(x) ∈ R,
modeling conditional probability distribution P (y|x), satisfies the following:

log
P (y = 1|x)
P (y = −1|x)

= βh(x),

where β corresponds to the level of noise, measured by the Bayes risk R∗ =
E[f∗(x)] (i.e., there is one-to-one correspondence between β and R∗). In the
main experiment we set R∗ = 0.1. We define the target function h(x) as:

h(x) = x1 − x2 + 0.2(x3 − x4) + 5e−(x2
5+x

2
6+0.2x2

7) − 5
10∏
j=8

I(−0.5 ≤ xj ≤ 0.5)

+ I(x11 ≥ 0 ∧ x12 ≥ 0)− I(x13 ≥ 0 ∧ x14 ≥ 0) + θ, (29)

where threshold θ was chosen so that the prior probabilities of both classes
were equal: P (y = 1) = P (y = −1). Notice that target function contains linear
terms (which are hard to approximate by trees and rules), Gaussian term (ball
in the coordinate origin), cube and two rectangles. Later we will also add some
irrelevant attributes x15, x16, . . . which do not affect the target function.

To select the values of parameters, we drew 30 training and testing sets of size
N = 1000. We tested simultaneous minimization with exponential loss, and three
further minimization techniques (constant-step, gradient descent and gradient
boosting) with all three loss functions (exponential, sigmoid, logit). For each
algorithm we tried all combinations of the following values of the parameters:
ν ∈ {1, 0.5, 0.25, 0.1, 0.05}, η ∈ {1, 0.75, 0.5, 0.25}. Moreover, the constant-step
minimization was tested with parameters β ∈ {1, 0.5, 0.2, 0.1}. We varied M ,
the size of the ensemble, from 1 to 1000, thus obtaining for each classifier the
accuracy on testing set as a function of M . Such functions can be easily shown
in the form of “accuracy curves”. Using these curves, we were able to choose
for each loss function the best minimization technique and the best values of
the parameters. The exponential loss was an exception, where the simultaneous
minimization was treated separately from the other techniques. Thus we ended
up with four algorithms:

– simultaneous minimization with exponential loss (SM-Exp): ν=0.1, η=0.25,
– constant-step with exponential loss (CS-Exp): β = 0.2, ν = 0.1, η = 0.25,
– constant-step with logistic loss (CS-Log): β = 0.2, ν = 0.1, η = 0.25,
– constant-step with sigmoid loss (CS-Sigm): β = 0.2, ν = 0.2, η = 0.5.



Notice that neither gradient descent nor gradient boosting were selected. Gra-
dient descent obtained similar result to constant-step (they are, in fact, very
similar), but the gradient boosting was much worse. The curves for each of the
best classifiers are shown in top left panel of Figure 1. It follows from the figure
that none of the classifiers outperforms the others in a significant way. Sigmoid
loss tends to minimize the error slower than other loss functions, on both train-
ing and testing set, however for M = 1000 it achieves the same accuracy. Notice
that CS-Exp does not decrease the training error as rapidly as SM-Exp, yet the
characteristics of both algorithms on the testing set are similar. In the top right
panel of Figure 1 we show learning curves, the accuracies of the classifiers as
functions of the sample size up to N = 10000; all classifiers decrease the testing
error, but SM-Exp seems to gain the most as N increases.

From the above experiment, it is hard to observe a supremacy of one of the
loss functions. In the next step, we investigate how the performance of classifiers
depends on shrinkage ν and subsample size η. We focus on SM-Exp, but the
relationships are similar for other loss functions and minimization techniques.
The bottom panels of Figure 1 show both dependencies. It follows that shrinkage
does improve the accuracy, similarly as it was shown in [5]. Nevertheless, too
strong shrinkage may lead to a very slow learning rate (see the black curve for
ν = 0.01). We found out that the optimal range of shrinkage is 0.1-0.2. It also
follows that sampling has a positive impact on the accuracy – even small values
of η (≤ 0.5) seem to work very well.

Let us examine the behavior of classifiers if we increase the Bayes risk up
to the level of 0.3. This is shown on the top left panel in Figure 2. Obviously,
the testing error of the classifiers was increased. However, the shape of accuracy
curve for all the classifiers has not changed: we do not observe any significant
overfitting. At first sight, it looks contrary to what has usually been observed in
boosting experiments: the exponential loss tends to be prone to overfitting since
it focuses too much on the incorrectly classified examples, which are typically
noise; sigmoid loss should behave best, since it gives up on the hardest examples
(because of the shape of this loss function). No such behavior is observed. The top
right panel in Figure 2 sheds some light on this phenomenon. The only difference
is that the decision of the rule is now calculated on the subsample rather than
the whole training set. This leads to severe overfitting of all classifiers except that
with the sigmoid loss. Thus, we see that calculating the response on all examples
makes the classifier robust to noise: the rules overfitted to the data, will get their
responses (decisions) close to 0. This also, at least partially, explains why all loss
functions behave roughly the same: since the values of the rule responses are
relatively small, the ensemble function f(x) is in the vicinity of 0 for most of
the examples and in this range, all loss functions share a similar characteristic
(the main difference between the loss functions is for large negative values of the
margin).

We also considered adding some irrelevant attributes to the problem. The
bottom left panel in Figure 2 shows that the presence of 20 irrelevant attributes
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Fig. 1. Experiments on artificial data. Top left: accuracy curves for the best algorithms,
top right: learning curves, bottom left: SM-Exp with varying ν and constant η = 0.25,
bottom right: SM-Exp with varying η and constant ν = 0.1.

did not affect ENDER much, regardless of the kind of loss function was used.
Notice the similarity between this plot and the top left one in Figure 1.

Finally, the bottom right plot in Figure 2 shows the coverage of the rules for
different minimization techniques applied to the exponential loss. We observe
what has already been anticipated by Theorem 3, that step length determines the
coverage of the rule. We have already noticed that the best prediction accuracy is
achieved for the small (but non-zero) step length 0.1-0.2: neither small and well
fitted nor very general rules achieve the best prediction performance. Gradient
boosting, in turn, produces rules with much lower coverage than gradient descent
(see Theorem 2). It is interesting that SM-Exp also generates smaller rules,
but achieves better performance. Notice that the possibility of controlling the
coverage may be very interesting and helpful in interpreting the meaning of a
rule.
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Fig. 2. Experiments on artificial data. Top left: accuracy curves for Bayes risk 0.3 (rule
response calculated over the whole training set), top right: rule response calculated
on subsample (Bayes risk 0.3), bottom left: accuracy curves for a problem with 20
additional irrelevant features, bottom right: coverage of rules (lines are smoothed).

7.2 Real Data

In the second part of the experiment, we compare ENDER with already existing
approaches to learning rule ensembles: LRI, SLIPPER and RuleFit. We selected
the following parameters for each method:

– SLIPPER: we set the maximum number of iterations to 500, the rest of
parameters remains default (we kept the internal cross validation, used to
choose the optimal number of rules, switched on).

– LRI: according to the experiment in [9], we set rule length to 5, froze feature
selection after 50 rounds, and chose 200 rules per class and 2 disjuncts since
some previous tests showed that those values work well in practice.

– RuleFit: according to the experiment in [10], we chose mixed rule-linear
mode, set average tree size to 4, increased number of trees to 500, and chose
sample fraction as min{0.5n, 100 + 6

√
n}/n.



Table 1. Test errors and ranks (in parenthesis). In the last row, the average rank is
computed for each classifier.

Dataset CS-Log SM-Exp CS-Exp CS-Sigm SLIPPER LRI RuleFit
haberman 0.268 (4.5) 0.255(1.0) 0.262(3.0) 0.258(2.0) 0.268(4.5) 0.275(7.0) 0.272(6.0)
breast-c 0.283 (5.0) 0.279(3.0) 0.272(1.0) 0.273(2.0) 0.279(4.0) 0.293(6.0) 0.297(7.0)
diabetes 0.245 (2.0) 0.246(3.5) 0.246(3.5) 0.236(1.0) 0.254(6.0) 0.254(5.0) 0.262(7.0)
credit-g 0.233 (2.0) 0.235(3.0) 0.228(1.0) 0.242(5.0) 0.277(7.0) 0.239(4.0) 0.259(6.0)
credit-a 0.135 (4.5) 0.135(4.5) 0.123(2.0) 0.138(6.0) 0.17 (7.0) 0.122(1.0) 0.132(3.0)
ionosphere 0.063 (3.0) 0.06 (2.0) 0.057(1.0) 0.065(4.5) 0.065(4.5) 0.068(6.0) 0.085(7.0)
colic 0.15 (5.0) 0.147(3.5) 0.144(2.0) 0.128(1.0) 0.15 (6.0) 0.161(7.0) 0.147(3.5)
hepatitis 0.195 (7.0) 0.182(4.0) 0.188(5.0) 0.162(1.0) 0.167(2.0) 0.18 (3.0) 0.194(6.0)
sonar 0.168 (5.0) 0.154(3.0) 0.164(4.0) 0.145(1.0) 0.264(7.0) 0.149(2.0) 0.197(6.0)
heart-statlog 0.167 (1.0) 0.17 (2.0) 0.174(3.5) 0.174(3.5) 0.233(7.0) 0.196(6.0) 0.185(5.0)
liver-disorders 0.264 (4.0) 0.258(3.0) 0.249(1.0) 0.249(2.0) 0.307(7.0) 0.266(5.0) 0.307(6.0)
vote 0.032 (1.0) 0.034(2.5) 0.034(2.5) 0.046(5.0) 0.05 (6.0) 0.039(4.0) 0.05 (7.0)
heart-c-2 0.169 (4.0) 0.155(3.0) 0.152(1.0) 0.155(2.0) 0.195(7.0) 0.185(5.0) 0.189(6.0)
heart-h-2 0.17 (1.0) 0.176(3.0) 0.173(2.0) 0.193(6.0) 0.2 (7.0) 0.183(4.0) 0.183(5.0)
breast-w 0.039 (4.5) 0.039(4.5) 0.036(3.0) 0.031(1.0) 0.043(7.0) 0.033(2.0) 0.041(6.0)
sick 0.015 (1.0) 0.016(3.0) 0.018(4.0) 0.061(7.0) 0.016(2.0) 0.018(5.0) 0.019(6.0)
tic-tac-toe 0.0090(1.0) 0.042(3.0) 0.081(5.0) 0.19 (7.0) 0.024(2.0) 0.122(6.0) 0.053(4.0)
spambase 0.052 (4.0) 0.046(2.0) 0.046(1.0) 0.052(5.0) 0.059(7.0) 0.049(3.0) 0.059(6.0)
cylinder-bands 0.219 (6.0) 0.187(3.0) 0.194(4.0) 0.154(1.0) 0.217(5.0) 0.165(2.0) 0.381(7.0)
kr-vs-kp 0.009 (2.0) 0.009(3.0) 0.01 (4.0) 0.035(7.0) 0.006(1.0) 0.031(6.0) 0.029(5.0)
avg. rank 3.38 2.98 2.68 3.5 5.3 4.45 5.73
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Fig. 3. Critical difference diagram

– ENDER: we chose the best four classifiers from the artificial data experiment,
described in details in the previous section. For all classifiers, we setM = 500.

We used 20 binary classification problems, all taken from the UCI Repository
[17]. Each test was performed using 10-fold cross validation (with exactly the
same train/test splits for each classifier) and average 0-1 loss on testing folds
was calculated. The results are shown in Table 1.

To compare multiple classifiers on multiple datasets, we follow [18], and apply
the Friedman test, which uses ranks of each algorithm to check whether all
the algorithms perform equally well (null hypothesis). Friedman statistics gives
35.636 which exceeds the critical value 12.592 (for confidence level 0.05), and
we can reject the null hypothesis. Next, we proceed to a post-hoc analysis and
calculate the critical difference (CD) according to the Nemenyi statistics. We
obtain CD = 2.015 which means that algorithms with difference in average ranks
greater than 2.015, are significantly different. In Figure 7.2 average ranks were
marked on a line, and groups of the classifiers that are not significantly different
were connected. This shows that all ENDER algorithms outperform SLIPPER
and RuleFit, but are not significantly different from LRI. On the other hand,
none of the three well-known rule ensemble algorithms (LRI, SLIPPER, RuleFit)
is significantly better than any other.



The results confirm what we have already learned from the experiment on the
artificial data. The choice of the loss function does not seem to be a critical issue
in the learning process. The more important is the use of shrinkage, resampling
and calculating the response of the rule on the whole dataset rather than on the
subsample only. This can be noticed from the fact that SM-Exp is very similar
to SLIPPER, but SM-Exp applies these techniques, what leads to much better
results. We did not use in this experiment MLRules, because this algorithm is a
variant of ENDER with logit loss.

8 Conclusions and Future Plans

We analyzed theoretically and empirically a general algorithm for learning an
ensemble of decision rules. We found out that the loss function has a small
impact on classifiers’ performance. In turn, the minimization technique influences
the form of the rules and their coverage. We also showed a simple technique
consisting of shrinking base classifiers towards the priors and sampling from the
training set when a single rule is built, but calculating a response of the rule on
the whole training set. This technique offers an alternative to pruning and gives
a significant improvement of accuracy. The introduced method outperformed
three other well-known rule ensemble algorithms in our experiment.

An additional advantage of rules is their simplicity and interpretability. A
question, however, arises whether an ensemble of 1000 rules is still interpretable.
There exists an opinion that only a small set of rules can provide an insight
into the analyzed phenomena. We believe that rule ensemble can still be used
for interpretation purposes. One way is to follow the approach given in [10].
Another option is to sort the rules in the ensemble by some rule interestingness
measure as it is done in the case of association rules. In this paper, we have
shown that one can easily control the coverage of the rules. This feature can be
utilized in searching for interesting rules. We postpone further analysis of this
problem to our future work.
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