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Abstract. Subgroup discovery is a task from the area of Knowledge
Discovery in Databases (KDD) that aims at finding interesting subgroups
of a population. One problem with subgroup discovery algorithms is that
many of them return a very high number of subgroups, including many
redundant ones. In this paper, we present an approach to iteratively
build up a set of subgroups for a numerical target attribute. The result
is a additive representation of the patterns in the dataset, which can
also be used as a regression model. The iterative scheme presented is
similar to Transformation-Based Regression (TBR), an algorithm from
the area of rule-based regression. While this is work in progress, first
experiments show that the resulting sets of subgroups have a predictive
accuracy that is similar to that of models generated by TBR, while the
models are much more compact and arguably easier to interpret.

1 Introduction

Subgroup discovery [Klö96,Wro97] is a task from the area of Knowledge Discov-
ery in Databases (KDD) that aims at finding interesting subgroups of a pop-
ulation. Unlike in classification or regression approaches, the goal of subgroup
discovery is not primarily to come up with a predictive function, but instead to
come up with a representation that is easily interpretable by a user and provides
a compact description of the most interesting patterns in the data. Subgroup
Discovery is a general approach that has shown to be useful in a variety of ap-
plication scenarios (like medical consultation systems [ABP06], spatial analysis
[KM02] and marketing campaign planning [LCGF04]).

One problem with subgroup discovery algorithms is that many of them return
a very high number of subgroups. This is particularly true for algorithms that
exhaustively search the space of subgroup descriptions and return all subgroup
descriptions that are statistically significant. As a result, the user is often over-
whelmed by a huge list of possibly redundant or uninteresting subgroups. In this
paper, we consider the problem to construct a representative set of subgroups,
that is we tackle what Klösgen called the “more ambitious [goal to construct]
a best global system of subgroups” ([KZ02], Chapter 5.2). More precisely, we
aim at building sets of subgroups that make up a good representation for nu-
merical target attributes (like prices, costs or salaries). The case of numerical



subgroup discovery has gained little attention, unlike the case of binominal target
attributes, for which some approaches have been proposed [LFKT02,Sch04].

Our approach to build up sets of subgroups is based on techniques from
the domain of rule-based regression. In particular, we use an iterative scheme
inspired by the symbolic regression technique Transformation Based Regression
(TBR) [BKN+02] to incrementally build up a model of the data based on a
set of subgroups. In some sense, subgroup discovery and rule-based regression
complement one another: In the area of subgroup discovery, several techniques
have been developed to efficiently calculated compact representations of local
patterns, while rule-based regression techniques focus more on global models
and predictive accuracy. Besides, subgroup discovery and rule-based regression
techniques have in common that they emphasize representational issues [WI95].

Overall, our approach works as follows: Similar to TBR, our algorithm itera-
tively constructs a model, which essentially consists of a set of subgroup descrip-
tions associated with an offset. The offset capture how being in that subgroup
affects the target value. That is, the prediction for an example is calculated by
taking the base prediction and adding the offsets of all subgroup descriptions
matching that example. Our algorithm start with a simple (constant) model
whose base prediction is simply the average target value. Thereafter, the it-
eration starts: First, the numeric label is predicted on the base of the model
calculated to far. Thereafter, the algorithm searches for subgroups where the
target values in the training set differs from the prediction. The description of
the most significant subgroup is added to the model and the offsets are adjusted.
Thereafter, the next iteration starts until no significant subgroup can be found.

The use of subgroups in this iteration scheme is appealing because subgroups
represent subsets where the predictions significantly deviate from the actual
values, and at the same time involve a large number of examples. Thus, the use
of subgroup discovery techniques avoids selecting unrepresentative outliers. The
output of our algorithm is a set of subgroup descriptions (a subgroup description
is simply a set of conditions on attributes, like for example “cylinders=8” in a car
dataset) annotated with an offset or impact on the output (like “+8000 e”). We
believe that the resulting overall representation is very intuitive, as it is similar
to many common mechanisms for price calculation.

As mentioned earlier, this is work in progress. We present first results ob-
tained by applying our algorithm to four (slightly modified) datasets from UCI
Repository [AN07]. The experiments show that our simple additive model, based
on a set of subgroups, is much more compact than the representation obtained
using TBR while it has a similar predictive accuracy. We also consider descrip-
tive features of the resulting set of subgroups, like overlap and covering degree,
as a means to compare the quality of the sets of subgroups.

The remainder of this paper is structured as follows: In Section 2 we formally
introduce the task of subgroup discovery and thereafter illustrate it using an
example from a medical domain in Section 3. Thereafter, we present our approach
in Section 4. In Section 5 we present some experimental results. We review related
work in Section 6, before we conclude in Section 7.



2 Subgroup Discovery

In this section, we will formally define the problem of subgroup discovery. Let
DB = {R1, ..., RN} be a database or dataset, consisting of N rows, each built up
of l + 1 values. We distinguish one attribute c, called the target attribute, from
the l ordinary attributes {a1, a2, ...al}. In this paper we only consider datasets
where the target attribute is a numeric target attribute; for simplicity, we will
assume that the domain of the target attribute is the reals. For the other at-
tributes {a1, a2, ...al}, we assume finite domains D(ai) = {v1,i, ..., vmi,i}, that is
we consider nominal non-target attributes.

A subgroup description sd is a set of terms {t1, ..., tk} where every term ti
is a constraint on an attribute, i.e. ti has the form (ai = vi), vi ∈ D(ai). The
length of the subgroup description is the number of terms it is built of. Given
a database DB and a subgroup description sd, the subgroup extension of sd on
DB is the set of rows Rj ∈ DB that satisfy all terms ti ∈ sd. We call the number
of rows in the extension of a subgroup the size of the subgroup.

A quality function q is a mapping from DB × sd to the reals. Intuitively, a
quality function expresses how “interesting” a subgroup is. Several quality func-
tions have been proposed, for the numerical, the binary and the multi-class case
[Klö96,SW00]. As already mentioned, in this paper, we only consider numeric
target attributes and we will only consider the “mean test” quality function

√
n(m−m0)

where m and m0 denote the mean in the subgroup and in the overall population,
respectively, while n denote the size of the subgroup. This quality function is
based on the statistical mean test [Klö96] and thus has a neat formal foundation.
Now the problem of subgroup discovery is defined as follows: Given a database
DB, the quality function q(DB, sd) :=

√
n(m−m0), and a number k, determine

the k subgroup descriptions sd with maximum quality. Or, put more formally:
return a set of k subgroup descriptions G such that

∀sd : ¬sd ∈ G→ q(DB, sd) ≤ q∗ (1)

where q∗ = minsd∈G q(DB, sd). Please note that the set G may not be uniquely
determined (if there are many subgroups with the same quality). In this case,
any set of subgroup descriptions that satisfies the above condition 1 is considered
a valid result.

3 Motivation and Example

The work presented in this paper was largely motivated by the goal to detect
patterns in health care service data, which was done in the context of the Eu-
ropean Union Project iWebCare (http://iwebcare.iisa-innov.com/), which
aims at building a platform for the facilitation of Fraud Detection in health care
e-government services. In this context, we considered datasets with prescriptions



issued by doctors. Besides the cost, the prescriptions are described by a set of
attributes, like the doctor’s specialty, the region of the doctor’s practice, the
kind of disease etc. Unfortunately, no information is available as to whether a
prescription is fraudulent, which prevented the use of a supervised, classification-
based approaches in the style of [OFR06,BH02]. Instead, we aimed at detecting
patterns in cost of prescriptions, focusing on effects that seem suspicious and
may be a hint on fraud.1

Subgroup discovery seemed a promising approach to detect such patterns.
However, one problem is that the sought-after patterns are likely to be hidden
behind dozens or hundreds of other patterns - for example, it is a well-known
fact that medical branches or specialties that rely more heavily on technical
equipment cause higher costs; the region has an effect on the cost; and many
more. Please note that every combination of these subgroups also builds a - sta-
tistically - interesting subgroup, like radiologists working in urban regions. One
way to overcome these difficulties might be the adaptation of one of the tech-
niques proposed for binominal target attributes [LFKT02,Sch04], but instead we
opted for a representation that expresses the effects represented by individual
subgroups in a cumulative respectively additive way.

3.1 A Simple Motivating Example

To illustrate our approach, we use a simple example with hypothetical data,
inspired from a medical domain. The data is shown in Table 1. The rows rep-
resent medical prescriptions. As target attribute, we consider the cost of the
prescription. Beside this target attribute, the prescriptions contain the doctor’s
specialty and the information whether the doctor’s practice is in an urban or a
rural environment.

Cost Specialty Region

50 Surgery Urban
20 Internal Med Urban
20 Internal Med Urban
10 Internal Med Rural
40 Surgery Rural
40 Surgery Rural

Table 1. Prescription example

In this example, the three subgroup descriptions with positive quality are

– {Specialty = Surgery} (with mean 43.33 and size 3),
– {Specialty = Surgery,Region = Urban} (with mean 50 and size 1), and

1 The question whether a statistically unusual prescription is actually fraudulent is
clearly beyond the scope of this paper.



– {Specialty = Surgery,Region = Rural} (with mean 40 and size 2)

and the corresponding subgroups consist of the rows that fulfill these conditions
(that is rows 1, 5 and 6; resp. row 1; resp. rows 5 and 6).

While these two subgroups are surely interesting, they arguable do not op-
timally capture the structure of the data. In fact, a close inspection of the data
shows that the price can be explained by two effects: Surgery is more costly than
internal medicine, and being in an urban regions also results in higher costs, com-
pared to rural regions. These effects could be described by the following set of
subgroups, where the effects are additive, meaning that a prescription dealing
with surgery and issued in an urban region is affected by both effects:

– {Specialty = Surgery} (with offset 30 and size 3)
– {Region = Urban} (with offset 10 and size 3)

The above set of subgroups express that the specialty surgery affects the price
by augmenting it on average by 30, and that similarly the fact that the region is
urban increases the price by 10.2 As already mentioned, the model is additive,
meaning that a prescription dealing with surgery and made in an urban region
is affected by both effects.

The algorithm we will present in Section 4 constructs models that are based
on this simple and easily interpretable representation.

4 The Algorithm

Before we present our algorithm, we will now formally define the structure of
our models. A model consists of

– A base prediction value base (a Real value);
– A set of subgroup descriptions annotated with an effect on the outcome.

That is, a set of pairs (sdi, offseti), where sdi is a subgroup description as
described in Section 2 and offseti is a Real.

Our models have a simple additive semantics, meaning that if multiple sub-
group descriptions match an example, the offsets of all matching subgroup de-
scriptions are added. We will now make this precise.

Given a model (base, (sdi, offseti)n), the prediction for an example is deter-
mined as follows:

prediction(e) = base +
∑

i|matches(sdi,e)

offseti (2)

Here, matches(sd, e) expresses that the example e satisfies all terms t in subgroup
description sd.

2 The base price for prescriptions that are neither in urban regions nor deal with
surgery is 10.



Now that we have described our model representations, we present the over-
all algorithm. It is listed in the figure Algorithm 1. The algorithm proceeds as
follows: First, a new model model is initialized which simply predicts the average
value. Thereafter, the algorithm enters a loop. In this loop, a temporary copy of
the dataset is created and the new target values are computed as the difference
between the target value in the original dataset and the prediction (computed by
calcPrediction as specified in Equation 2). Next, the most interesting subgroup
sg is computed (using a standard subgroup discovery algorithm). This subgroup
represents the part of the population where the deviation between the prediction
and the actual target value is most significant. If this subgroup is not statisti-
cally significant (as determined by the function isSignificant discussed below),
the current model is returned as result and the computation ends. Else, sg is
added to the model and the parameters of model are optimized (by the function
optimizeParameters discussed below). Finally, the next iteration starts.

Algorithm 1 Additive Subgroup TBR
Input: Database DB with numerical target
Output: A list of subgroups
avg := average target value in DB
model := new model with offset avg and no subgroups
while true do

currentDB := copy of DB
for all examples e in currentDB do

e.target := e.target - calcPrediction(model , e)
end for
sg := Search for most significant subgroup in currentDB
if not (isSignificant(sg , currentDB)) or sg ∈ model then

return result
end if
add sg to model
call optimizeParameters(model , DB)

end while

We will now discuss two functions called by the algorithm.

– The function isSignificant determines if a subgroup represents a significant
pattern in the database. More precisely, it tests the null hypothesis that “the
mean of the target values in subgroup and in the rest of the dataset do not
differ”. This is done by a t-test (for two independent samples with different
sizes and variances). The details of the t-test can be found in any textbook on
statistics. In our experiments, we used both significance threshold α = 0.95
and α = 0.99.
We remark that the t-test as stopping criterion fits particularly well with
the mean test quality function, which is itself based on this test.

– The function optimizeParameters optimizes the parameters base and offseti
to best fit the dataset. This is essentially a linear regression task. Please note



that the optimization of the parameters of the model is important to ensure
that the average of the prediction is (roughly) equal to the actual average of
the target attribute in the original dataset. Without this step, the addition
of new subgroups to the overall model, using the mean test quality function,
would cause the prediction to monotonically increase, which would prevent
the model to converge.
More precisely, the calculation of the optimal parameters is done as follows:
First, we compute every set of examples that is matches by the same set of
subgroups. That is, we compute every maximal set of examples Ei such that

∀e1, e2 ∈ Ei : [∀sd ∈ model : matches(sd, e1) ≡ matches(sd, e2)]

Let k be the number of these sets of examples. Now the optimal parameters
can be computed by solving the following system of linear equations

n1[base+
∑

j|sdj∈ model ∧ matches(sdj ,E1)

offsetj ] = s1

...

nk[base+
∑

j|sdj∈ model ∧ matches(sdj ,Ek)

offsetj ] = sk

where ni is the number of examples in the i’th set Ei, si the sum of the target
values of all examples in Ei in the original dataset, and matches(sgj , Ei) a
shortcut for ∀e ∈ Ei : matches(sgj , e).

4.1 An Example and Some Considerations

To illustrate the algorithm, we will describe its computation on the simple ex-
ample from Table 1.

The initial base prediction is 30. In the first iteration, the subgroup discovery
searches for subgroups that have a target value with mean above 30. The most
significant subgroup is Specialty=Surgery, which has a size of 3 and a mean of
m = 13.33 (versus m0 = 0, the mean of the difference of the original target value
and the prediction). This subgroup is added to the model and its parameters
are optimized, yielding base = 16.66 and offset1 = 26.66. In the next iteration,
the algorithm uses the new model to predict the target value (unlike in the
first iteration, where the prediction was always 30, now there are two possible
values for the prediction). The next search for subgroups yields the subgroup
Region=Urban. This subgroup is added to the model and the parameters are
optimized to base = 10, offset1 = 30 and offset2 = 10. In the third iteration no
significant subgroups are detected and the algorithm ends. The resulting model
looks as follows:

base = 10
sd1 = {Specialty=Surgery}, offset1 = 30
sd2 = {Region=Urban}, offset2 = 10



The model consists of two subgroups, a total of two conditions and three real
values. The two subgroup have an overlap of 1 out of 3 rows (namely the row with
Specialty=Surgery and Region=Urban), that is they have an average overlap of
33%. Overall, the additive model represents a compact characterization of the
patterns in the example dataset.

However, there is a caveat. While in this example our algorithm effectively
computes the optimal decomposition into two additive subgroups, this is not
guaranteed. Indeed, even in this simple setting it is straightforward to construct
examples where the algorithm gets stuck in a local optimum and does not come
up with an optimal set of subgroups. As already mentioned in the introduction
this is work in progress and Algorithm 1 is just a first attempt to construct good
sets of additive subgroups.

Beside this limitation, there is another issue that deserves closer attention.
The models generated by the our algorithm can include subgroups whose quality
(as measured by the mean test quality function) is not positive on the original
dataset. Table 2 shows an example: here, three medical specialties are considered.
One results in a low costs, the second one in medium costs and the last one in
a high costs.

Cost Specialty

10 Internal Med
20 Neurology
30 Surgery

Table 2. Prescription example

When applied to this dataset, our algorithm returns the following model:3

base = 10
sd1 = {Specialty=Surgery}, offset1 = 20
sd2 = {Specialty=Neurology}, offset2 = 10

This model includes one subgroup description, Specialty=Neurology, whose qual-
ity on the original dataset is 0 (The subgroup was added to the model because
Algorithm 1 considered the quality of the subgroups on the difference between
the target values in the original dataset and the intermediate prediction). Even
though according to the standard definition this subgroup is thus not interesting,
in the above model it is an important part of the description of the patterns in
the dataset.

3 We remark that in this example the significance level has to be decreased, because
the dataset consists of just three examples.



5 Evaluation

To evaluate the quality of the subgroup sets respectively of the subgroup-based
model computed by our algorithm, we considered both predictive and descriptive
evaluation measures.

We ran our experiments on four (modified) datasets from UCI Repository
[AN07]: the auto dataset; the housing dataset; the servo dataset; and finally the
solar flare 2 dataset4 . As our algorithm cannot deal with non-target attributes
that are numerical, for the auto dataset we omitted all numerical (non-target)
attributes. For the other three datasets, we discretized all numerical (non-target)
attributes into four equally sized bins. We also removed all examples involving
missing values. Table 3 summarizes the characteristics of the four datasets.

Dataset number of attributes number of examples

autos 10 199
housing 13 506
servo 4 167
solar flare 10 1066

Table 3. Datasets

We won’t go into the details of our implementation except to remark that
it made use of FP-Trees [HPY00] and (relatively simple) optimistic estimates
[Wro97] to speedup the computation of the subgroups (see also the paragraph
on fast subgroup discovery in the related work section). More details can be
found in [GRSW08]. Using this implementation, for every dataset in Table 3 we
could calculation a subgroup-based model in less than 30 seconds on an Intel
Core 2 Duo E8400 with 3 GB of RAM under Windows XP.

5.1 Descriptive Evaluation Measures

Size of the Models Table 4 shows the size of the models obtained using our
algorithm for values of 0.95 and 0.99 for α (“SG-0.95” and “SG-0.99”), as well as
using TBR5. The table shows both the number of subgroups and the number of
terms (i.e. conditions of the form “Attribute = Value”) for the models generated
by our algorithm; For TBR, the table shows the number of rules and the number
of conditions.
4 In the solar flare dataset, there are 3 candidate target attributes: the number of

common flares, of moderate flares and of severe flares. In our experiments we simply
used the sum of these flares as target attribute.

5 We used a faithful reimplementation of TBR in Java, following the description given
in [BKN+02]. As minor modification, we limited the maximal number of rules in a
model to 200.



Dataset SG-0.95 SG-0.99 TBR
# Sg/ #Terms # Sg/ #Terms # Rules/ #Terms

autos 29 / 60 18 / 35 127 / 1016
housing 64 / 220 37 / 123 200 / 2019
servo 100 / 297 25 / 72 189 / 573
solar flare 43 / 168 26 / 93 189 / 1585

Table 4. Number of subgroups/number of terms in the models

The figures show that the models learned using our algorithm based on sub-
groups discovery are tremendously more compact than those using TBR. Intu-
itively, this is not really surprising, because in subgroup discovery the size of the
subgroup affects the quality of a subgroup, which is not the case in the greedy
rule creation algorithm of TBR.

Dataset Algorithm # SG p.e. # overl. SG overl. prop. o. with largest o. SG

auto Alg.1 1.06 3.45 0.71 0.57
top-29 8.75 28 1 0.99
closed-29 6.98 28 1 0.99

housing Alg.1 1.98 5.97 0.91 0.63
top-64 21.9 63 1 0.99
closed-64 19.8 63 0.99 0.99

servo Alg.1 2.51 5.24 0.89 0.79
top-100 4.32 24.8 0.99 0.96
closed-100 4.32 24.8 0.99 0.96

solar flare Alg.1 0.73 3.44 0.83 0.74
top-43 7.71 42 1 1
closed-43 6.54 40.9 0.99 0.99

Table 5. Overlapping of the subgroups for α = 0.95

Overlapping Next, we consider the amount of overlapping in the set of sub-
groups computed by our algorithm. The Tables 5 and 6 show, for α = 0.95
respectively α = 0.99, i) the average number of subgroups that match an ex-
ample, ii) the average number of subgroups a subgroup intersects with, iii) the
average proportion of the examples in a subgroups that are also matched by
another subgroup and iv) the average overlap with the largest subgroup overlap-
ping with a subgroup. For comparison, the table also shows the figures if instead
of the subgroups computed by our algorithm one would simply use the most sig-
nificant subgroups (“top-X”) respectively the most significant closed subgroups



(“closed-X”)6 Here, X corresponds to the number of subgroups contained in
the model generated by our algorithm. For example, for the auto dataset and
α = 0.95 our algorithm returns a set of 29 subgroups and hence we listed the
figures for the top 29 (closed) subgroups.

Dataset Algorithm # SG p.e. # overl. SG overl. prop. o. with largest o. SG

auto Alg.1 0.89 3.67 0.71 0.55
top-18 6.1 17 1 0.99
closed-18 5.5 17 1 0.99

housing Alg.1 1.49 4.87 0.81 0.56
top-37 13.5 36 1 0.99
closed-37 12.5 36 0.99 0.98

servo Alg.1 1.18 4.56 0.79 0.75
top-25 2.53 15.4 0.96 0.88
closed-25 2.53 15.4 0.96 0.88

solar flare Alg.1 0.62 3.08 0.85 0.74
top-26 4.99 25 1 1
closed-26 4.67 25 0.99 0.98

Table 6. Overlapping of the subgroups for α = 0.99

The figures clearly show that the overlap in the sets returned by our algorithm
is smaller than in exhaustive or closed subgroup discovery. The figures also show
that in the subgroup-based models generated by our algorithm, on average less
than two or three subgroups match an example, meaning that on average the
prediction can be calculated by about two summations.

5.2 Predictive Measures

Regression Performance Despite the fact that optimizing prediction perfor-
mance is not the primary goal of subgroup discovery ([LKFT04]), we measured
the predictive performance of our algorithm. More precisely, we calculated the
root mean squared error (RMSE) in a 10-fold cross-validation. We compared the
results with those achieved by TBR and by a state-of-the-art SVM regression al-
gorithm, namely the improved SMO Algorithm for SVM Regression [SKBM00]7.
We considered both a linear and a quadratic Kernel. The results are shown in
Table 7:
6 Closed subgroups are computed by calculating all subgroups and leaving only one

subgroup description for every set of subgroup descriptions that match exactly the
same set of examples. This means that in the closed top subgroups there is no pairs
of different subgroup descriptions that match exactly the same set of examples.

7 We used the implementation of improved SMO provided by RapidMiner (formerly
YALE [MWK+06]), using the default parameters.



Dataset SG-0.95 SG-0.99 TBR SVM-Linear SVM-Quadratic

autos 4258 4342 4130 2815 3629
housing 5212 4988 6539 4858 6256
servo 0.52 0.51 0.63 0.9 0.52
solar flare 1.06 1.03 1.05 0.95 1.03

Table 7. X-Validation Performance (RMSE)

Overall, the experiments show that the models learned by our algorithm
perform roughly as good as TBR. The SVMs perform slightly better. On the
auto dataset, the RMSE using our algorithm is slightly higher than that using
TBR, while the SVMs perform significantly better. On the housing dataset, our
algorithm is clearly better than TBR. The result using an SVM depends on the
Kernel: Using a linear Kernel, the results are better, while using a quadratic
Kernel they are inferior. On the servo dataset, our algorithm performs best,
with the quadratic SVM performing similarly. TBR results in a slightly higher
RMSE, while SVM using a linear Kernel is clearly inferior. Finally, on the solar
flare dataset all approaches perform roughly similar.

Summarizing, the prediction performance is solid but not outstanding (as
one would expect from an approach focusing on representation issues and not
on prediction accuracy).

6 Related Work

Our iterative approach involves several calculations of subgroups, which can be-
come quite time consuming. Thus, it depends on algorithms that quickly perform
subgroup discovery. Fortunately, recently several approaches have been proposed
to speed up this task: For one, [AP06] proposed the use of efficient data structures
based on FP-Trees [HPY00] to enhance the performance. For another, the use of
optimistic estimates [Wro97] has been shown to allow to prune large parts of the
search space and thus significantly increase the overall performance [GRW08].
Finally, randomized approaches have been proposed that allow to search for sub-
groups by considering only a sample of the overall dataset, while guaranteeing
precise bounds on confidence and quality of solutions [SW00].

Other approaches to discover interesting pattern in numeric attributes in-
clude the search for “impact rules” proposed by Webb [Web01], which builds on
earlier work by Aumann and Lindell [AL99]. Impact rules are quite similar to
numeric subgroups: they consist of an antecedent (a conjunction of conditions)
and a consequent, which describes the impact on the target variable. As done
in standard numeric subgroup discovery [Klö96], the interestingness of impact
rules is measured in terms of their cover (size) and mean target value. Webb also
presents interesting strategies for the fast calculation of impact rules, based on
his OPUS framework. However, unlike our algorithm these approaches merely



collect the rules with the highest impact value, but do not consider their inter-
connection as we do (by taking into account the effect of subgroups found in
earlier iterations, treating their effects as additive).

As already mentioned in the introduction, our algorithm is quite similar
to Transformation-Based Regression (TBR) [BKN+02], a rule-based regression
technique based on Transformation Based Learning [Bri95]. TBR iteratively
builds up a prediction model by refining the model by means of transforma-
tion rules. More specifically, in the i+1-th iteration a transformation rules takes
as input the prediction of the i-th iteration and performs a linear transformation
to obtain the (better-fitting) prediction of iteration i + 1. The rules thus have
the following structure: “If [conditiont+1] then predictiont+1 = at+1 + bt+1 *
predictiont”, where at+1 and bt+1 are Reals. Thus, every rule includes an addi-
tive and a multiplicative component.

Other approaches to rule based regression use pseudo-classes, which essen-
tially corresponds to a discretization of the numerical target [WI95]. Regression
trees [BFOS84] build up tree-structured prediction models that are, similar to
rule-based learners, relatively simple to interpret.

The idea to iteratively search for subgroups, masking the effects of the sub-
groups already discovered in the subsequent iterations, was also the base for the
Algorithm CN2-SD presented in [LFKT02]. To considers different parts of the
instance space in each iteration, CN2-SD uses a weighted covering algorithm
which assigns a smaller weight to examples already covered. The same weighting
scheme has also been used in in other subgroup discovery systems like APRIORI-
SD [KLJ03]. Another approach to take into account information or subgroups
proposed by Scholz [Sch04] is to make use of sampling. Please note, however,
that all these approaches consider the task of classification, while our algorithm
(and TBR) consider the task of numeric regression.

The idea to incrementally build up a model by iteratively refining the pre-
diction made in earlier stages is also underlying the technique of Boosting [FS99].
This idea is also related to the Cascade-Correlation Learning Architecture [FL90],
which iteratively builds up a neural network layer by layer, where each layer
builds on the previous, unmodified layers.

Of course, there is also a large body of work on regression respectively func-
tion learning that is not based on rules. In particular, regression approaches
based on Support Vector Machines (SVM) [SKBM00] often achieve very good
prediction performance. However, these approaches focus on predictive accuracy
and not on obtaining compact, human-readable representations, and thus their
models are often not easily interpretable. The same holds for neural networks like
multilayer perceptrons. Some approaches exist that first build a neural network
or SVM representation and thereafter extract rules based on the non-symbolic
predictor constructed in the first stage [CS96,HBV06].



7 Summary and Discussion

In this paper, we have presented an approach to iteratively build up a set of sub-
groups for a numeric target attribute. Our approach brings together ideas from
the area of subgroup discovery as well as from the field of rule-based regres-
sion. In particular, it uses an iterative scheme inspired by Transformation-Based
Regression to incrementally build up its overall model. In every iteration, it
performs a numeric subgroup discovery to obtain a description of that part of
the dataset where the current prediction deviates the most from the actual tar-
get values. This description is added to the overall model, which consists of a
base prediction together with a set of subgroup descriptions annotated with an
(additive) effect on the prediction.

The models generated by our algorithm have an additive semantics, that
is, the prediction for a given example is calculated by adding the offsets of all
subgroup descriptions matching the example. The question how to calculate a
prediction from a set of overlapping subgroups can also be answered in other
ways: One possibility is to interpret the sequence of subgroups as an (ordered)
decision list [Riv87] and to only consider the first matching subgroup description.
Our additive interpretation, where the order of the subgroup descriptions is
irrelevant, has the advantage that it is similar to familiar mechanisms for price
calculation.

In the experimental section, we show that the resulting subgroup-based mod-
els have a predictive accuracy that is similar to that of TBR, while they are much
more compact that the models generated by TBR. Furthermore, as the models
have a simple additive semantics (unlike the linear transformations involved in
TBR rules), they are arguable easier to interpret for a human user. Our exper-
iments also show that the subgroups have less overlap than sets of subgroups
computed simply by exhaustive search or exhaustive closed subgroup search.

As already mentioned, this paper presents work in progress and much remains
to be done. In particular, we plan to compare the overlap of the subgroups gener-
ated by our algorithm with the overlap of subgroups generated using other tech-
niques, like weighting or sampling [Sch04,LFKT02,KLJ03]. However, as these
techniques have been proposed for binary target attributes, an adaptation to
the numerical case will be necessary. We also plan to consider other subgroup
quality functions than the mean-test quality function, for example quality func-
tions that consider both positive and negative deviations. Finally, we plan to
investigate whether it is possible to come up with better models by pruning the
assembled set of subgroups. As already mentioned in Section 3.1, our current
algorithm can get stuck in non-global optima even in relatively simple examples.
We plan to address these issues in future work.
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