
A Constraint-based Approach for Multispace

Clustering

Ruggero G. Pensa and Mirco Nanni

Pisa KDD Laboratory, ISTI-CNR, I-56124 Pisa, Italy
{ruggero.pensa,mirco.nanni}@isti.cnr.it

Abstract. In many applications, a set of objects can be represented by
di�erent points of view (universes). Beside numeric, ordinal and nominal
features, objects may be represented using spatio-temporal information,
sequences, and more complex structures (e.g., graphs). Learning from all
these di�erent spaces is challenging, since often di�erent algorithms and
metrics are needed. In the case of data clustering, a partitional, hierar-
chical or density-based algorithm is often well suited for a speci�c type of
data, but not for other ones. In this work we present a preliminary study
on a framework that tries to link di�erent clustering results by exploiting
pairwise similarity constraints. We propose two algorithmic settings, and
we present an application to a real-world dataset of trajectories.

1 Introduction

Exploratory data analysis processes are often based on clustering methods to get
insights about global patterns that hold in the data. A clustering task provides a
partitioning of objects and/or of attributes such that a grouping quality measure
is optimized. Depending on the type of data one wants to analyze, di�erent kinds
of metrics and clustering approaches have been proposed to provide accurate
clustering. However, in many applications, a set of objects can be represented
by di�erent points of view. For instance, in a traditional basket analysis setting,
a customer can be characterized by the items he/she purchases, or by census data
(age, sex, income). In bioinformatics, proteins are represented as sequences of
amino acids, or by their 2D (or 3D) structure. Each point of view de�nes a space,
and each space has its own metrics and statistics. De�ning a metric which takes
into account di�erent spaces is challenging. Discretization is a straightforward
way to combine numeric, ordinal and nominal features, but it does not allow
to integrate di�erent kinds of information, such as spatio-temporal information,
sequential events related to the object, structural information (e.g., graphs).
Given a clustering algorithm, it is possible to use di�erent kinds of features by
combining the (weighted) distances computed on di�erent spaces. This solution
has two main drawbacks. First, it is not easy to determine a good weight for each
distance component. Secondly, it is hard to use the same clustering algorithm
for all the feature spaces. Some algorithms could be good for a feature space, but
their results could be weak for other feature spaces, or, at worst, some algorithms
might be not applicable at all. To better motivate this claim, we will consider
three typical KDD applications.



Document clustering. Documents can be represented in di�erent ways. One
of the most commonly used representations is the classic documents × terms

scheme. Each document is represented in the term vector space, where each
term is a feature, and the value of each feature is the (normalized) number of
occurrences of the corresponding term in the current document. A popular task
in document clustering consists in grouping similar documents w.r.t. the terms
they contain. Another way to represent documents is growing in popularity.
Thanks to the availability of a huge number of digitalized documents, it is now
rather simple to obtain the document structure as a graph (and, more precisely,
in form of a tree). Graph mining and clustering is a rising topic in document
KDD, and a lot of works exist that try to de�ne suitable distance metrics (e.g.,
graph edit distance) for standard data mining tasks. Another way to look at
a document is to consider some other features which are context-free (such as
length, type, number of authors) or context-dependent (e.g., topics). Each of
these representations is a space, and might need di�erent types of algorithms
and distance metrics.

Transcriptomic/Proteomic analysis. A typical bioinformatics research is-
sue concern the analysis of gene expression data. Gene expression data are in
form of matrices where the expression level of a set of genes (rows) is measured
in a set of biological samples or conditions (columns). A typical gene expression
analysis task consists in clustering genes according to their expression pro�les,
and/or conditions. Some typical distance metrics are the Euclidean distance,
the Pearson correlation, or the sum-squared residues. However, genes can also
be viewed as sequences of the four nucleotides A, C, G and T. In sequence min-
ing, the string edit distance is often used to �nd similar sequences. Other kinds of
features can be associated to each genes, such as, gene functions or transcription
factors activating them. Proteins, instead, can be viewed as sequences of amino
acids, and then processed as strings (edit distance). Or one may consider the 2-
dimensional structure, and this leads to the particular case of graph clustering.
Also protein microarrays are often used to identify protein-to-protein interac-
tions. Each one of these views over the same set of objects can be represented
in a distinct feature space.

Trajectory clustering. Trajectories are often represented as sequences of
triplets identifying a time instant and the (x, y) coordinates in the 2-dimensional
space. Typically, the distance between two trajectories is computed by �xing two
time instants and considering points within this interval. Clustering this kind of
data, obviously tends to produce clusters containing geographically close tra-
jectories. We can also look at trajectories as sequences (strings) of events (e.g.,
"turn right", "u-turn", "straight on", "prolonged stop"). In this case, trajecto-
ries which are clustered together are geometrically similar, even if they are not
located on the same region of the space. A third point of view of a trajectory
database is related to the regions of interest covered by each single trajectory.
Even in this case trajectories are viewed as sequences of events, but the size of



the alphabet could be larger than in the previous example. Finally, each tra-
jectory can be characterized by di�erent kinds of features, such as information
about the driver, information about the type of vehicle (e.g., truck, car).

In [18] the problem of clustering in Parallel Universes is introduced, and a
clustering algorithm is proposed that operates on di�erent feature spaces. The
algorithm uses a fuzzy c-Means strategy, where each object has a di�erent clus-
ter membership value for each space. Then, some objects can be ignored in some
feature spaces. In [4] the problem of multi-view clustering is presented. The au-
thors show that considering two views of the same set of objects leads to better
results than considering one view at a time. In this paper we present a framework
that extends these ideas to the context of heterogeneous representation spaces,
each of them possibly requiring a di�erent clustering algorithm. Each space is
clustered separately, but it exploits the local results of other clustering algo-
rithms on the other representation spaces to guide the grouping task thanks to a
constrained-based approach. In this preliminary work we introduce two possible
strategies for clustering data represented in di�erent spaces, and we present an
instance of our framework in the case of trajectory cluster analysis.

The paper is organized as follows: Section 2 introduces our framework. Sec-
tion 3 analyzes a practical application of our clustering framework for trajecto-
ries. Section 4 discusses some open problems and perspectives of our framework.

2 Problem setting

We consider a set of N objects X = {x1, . . . , xN} and its U representations
X1 . . .XU (called spaces or universes). Each space is de�ned individually, de-
pending on its type. For instance, given an object xi and a representational
space u:

� xi,u can be represented by a vector xi,u =< xi,u,1, . . . , xi,u,Mu > where Mu

is the dimensionality of the vector space u and xi,u,j ∈ R;
� xi,u can be represented by a graph Gi,u(Vi,u, Ei,u), where Vi,u = {vi,u,1, . . . ,
vi,u,NVi,u

} is a set of vertices, and Ei,u = {ei,u,1, . . . , ei,u,NEi,u
} is a set of

edges (NVi,u andNEi,u being the number of vertices and edges respectively);
� xi,u can be represented by a sequence Si,u =< si,u,1si,u,2 . . . si,u,Mi,u

> where
si,u,j ⊆ Iu, Iu is a set of items, and Mi,u is the length of the i− th sequence.

� xi,u is a trajectory Ti,u =< si,u,1si,u,2 . . . si,u,Mi,u > where si,u,j is a triplet
(xi,u,j , yi,u,j , ti,u,j) s.t. (xi,u,j , yi,u,j) is a point in R2, ti,u,j is a timestamp
and Mi,u is the length of the i− th trajectory.

Other possible representations are geographic regions, images, item sets, strings,
and so on.

The goal of our approach is to partition X into U sets Πu (u = 1 . . . U) of K
clusters (Πu = {π1,u, . . . , πK,u}). The value of K is not speci�ed a priori.

Before describing our framework for multispace clustering we introduce the
semi-supervised clustering approach which is at the basis of our technique. The



goal of semi-supervised clustering is to use some a priori knowledge on the data to
guide the clustering process and get better partitions w.r.t. the available knowl-
edge. The easiest way to represent knowledge on data is by de�ning similarities
and dissimilarities between pair of objects. If we know that objects xi and xj

are similar, or that they belong to the same class, we can enforce xi and xj to
be in the same cluster. Analogously, if they are dissimilar, or they belong to two
distinct classes, we can enforce them to be in two distinct cluster at the end of
the clustering process. Similarities and dissimilarities are usually expressed by
the following pairwise constraints.

De�nition 1 (must-link/cannot-link). If two objects xi and xj are involved

in a must-link constraint, denoted c=(xi, xj), they must be in the same cluster.

If two objects xi, xj are involved in a cannot-link constraint, denoted c 6=(xi, xj),
they cannot be in the same cluster.

The ways a semi-supervised clustering algorithm processes these constraints are
essentially two. In the so-called metric-based approaches, the distance function is
trained to �t the set of must-link and cannot-link constraints, and then is used
during the clustering process. In the so-called constraint-based approach, the
distance function takes into account constraint violation as a penalty addendum,
or, alternatively, objects are assigned to cluster centroids avoiding constraint
violation.

Our key idea is that, given two representations X1 and X2 of the same set
of objects X, we can supervise the clustering process on the space X1 through
the results of the clustering process on X2 (or viceversa). In particular, given
the partition Π1 = {π1,1, . . . , πK,1} resulting from the clustering process of X
on the representation X1, we pick P pairs of objects and, for each pair, we
generate a must-link constraint if both objects are in the same cluster of Π1,
otherwise we generate a cannot-link constraint. We call C= = {c=(xi, xj)} the set
of must-link constraints and C 6= = {c 6=(xi, xj)} the set of cannot-link constraints
(|C=|+ |C 6=| = P ).

Algorithm 1: MS3Clust(X, X1, . . . ,XU , P1, . . . , PU−1, K1, . . . ,KU )

Input: Set of objects X, representations X1, . . . ,XU , integers P1, . . . , PU−1,
integers K1, . . . ,KU

Output: Partitions Πu

C=,0 = {∅};
C6=,0 = {∅};
for u = 1 . . . U do

if u > 1 then
GenerateConstraints(X, Πu−1, Pu−1, C=,u, C6=,u);

end

Πu=ConsClustering(X, Xu, Ku, C=,u, C6=,u);
end



Algorithm 1 sketches the generic approach for a set of U representations
(universes) ofX. It starts with an unconstrained clustering on the �rst space, and
then, at each iteration u, it �rst generates a set of must-link constraints C=,u and
a set of cannot-link constraints C 6=,u using the partitions obtained at the (u−1)-
th iteration, then it executes a semi-supervised clustering algorithm which is
speci�c for the representation Xu. Function GenerateConstraints generates
a speci�ed number of pairwise constraints by choosing the pairs randomly and
determining the constraint type looking if the cluster labels of the two objects are
the same or not. The number of pairwise constraints generated at each iteration
is trigged through a user-de�ned parameter Pu, while Ku is the desired number
of clusters (possibly ignored by clustering algorithms that do not need such
a parameter). Notice that Ku parameters may contain distinct values, since
the supervised part of the clustering algorithm takes into account the pairs of
similar/dissimilar objects, rather than the cluster labels. Notice also that the
results depend on the values of parameters Pu, and on the order in which the
spaces are processed. Notice also that, in most cases, the value of a parameter
Ku should be at least equal to the value of the parameter Ku−1, otherwise the
set of cannot-link constraints might not be satis�ed.

Algorithm 2 presents a solution for reducing the in�uence of the particular
chosen representation order. It is an iterative version of Algorithm 1 where the
representations are processed in a di�erent (random) order at each iteration.

Algorithm 2: IMS3Clust(X, X1, . . . ,XU , P1, . . . , PU−1, K1, . . . ,KU , I)

Input: Set of objects X, representations X1, . . . ,XU , integers P1, . . . , PU−1,
integers K1, . . . ,KU , integer I

Output: Partitions Πu

t = 0;
C=,0 = {∅};
C6=,0 = {∅};
for i = 1 . . . I do

for u = 1 . . . U do
Pick a representation Xt randomly;
if t > 0 then

GenerateConstraints(X, Πt−1, Pt−1, C=,t, C6=,t);
end

Πt=ConsClustering(X, Xt, Kt, C=,t, C6=,t);
t = t+ 1;

end

end



3 A case study

In this section we present an instantiation of our multispace clustering frame-
work. We consider the problem of clustering trajectories which are represented
in two distinct spaces. The �rst one (called X2D) is a 2-dimensional geographic
space, where trajectories are represented by sequences of 2-dimensional points.
The second space (called XF ) is de�ned as a set of M numerical features which
describe some trajectory properties. We choose to use a density-based approach
to cluster trajectories in the 2-dimensional geographic space, and the well-known
k-means algorithm to cluster them in the numeric M -feature space. In this case
study, we use the non-iterative version of our approach. Our framework is then
instantiated as follows: we use the clustering results of the density-based ap-
proach on X2D to generate a set of pairwise constraints. These constraints are
then used by a constraint-based version of the k-means approach. In the following
the two algorithms adopted are described in more detail.

The �rst approach is a simpli�ed, greedy density-based clustering algorithm
for trajectory data. The approach iteratively selects a random trajectory τ and
check whether there exist at least kmin trajectories not farther than a threshold
δ from it. The kmin and δ parameters express the minimum "density" of tra-
jectories required around τ . Then, if τ results to be "dense", all trajectories at
distance δ or less from τ are grouped to form a cluster, and are removed from the
input dataset before passing to the next iteration of the algorithm. At the end
of the computation, the trajectories not assigned to any cluster are considered
as noise and simply removed. The algorithm is parametric on the trajectory
distance function adopted. In our experiments we used the EDR distance [7],
essentially consisting of a variant of the classical edit distance. The clustering
schema described above has already been used in [1], to group trajectories (with
a di�erent distance function) for anonymization purposes.

The second clustering algorithm is MPCK-Means [5], a constraint-based
algorithm which integrates both constraint processing and metric learning [5].
Constraint processing is realized by adding some penalties to the Euclidean
distance in case of constraint violation. The metric learning step consists in
adapting the parametric Euclidean distance function by estimating the set of
weights.

3.1 Experimentation setting

We applied our framework to a dataset describing the movement of several ve-
hicles in the city center of Milan, Italy, during one day. The dataset contains
around 3800 trajectories having an average length of 17 points. In Figure 1(a)
the set of single space locations contained in the dataset is plotted.

The experimentation was carried out by representing each trajectory on two
distinct spaces. The �rst space consists of the original trajectories, i.e., the full
sequences of spatial coordinates. The second one describes the motion of each
trajectory by means of four features: total distance travelled, average speed,



(a) 2D projection of Milan GPS data (b) Sample spatial cluster

Fig. 1. Input trajectory data and sample cluster (spatial projection)

average number of stops performed per km, number of stops per hour. In par-
ticular, a stop occurs when the speed of a trajectory is below a given threshold.
In our experiment it was set to 5 mt/sec.

Similar trajectories in the �rst space are characterized by the fact that they
share some segment of the paths they follow (though the timings can be very
di�erent). That is visible, for instance, in the sample cluster shown in Figure 1(b),
obtained by clustering over the space of trajectories. Similar trajectories in the
second space, instead, have similar general behaviours, with no direct relation to
the geographical location. For instance, two trajectories can have similar speeds
while moving in completely di�erent parts of the city.

3.2 Results

A comparison of the results obtained by clustering on the �rst domain only, on
the second domain only and then on both by means of the schema in Algorithm 1
(using a set of 300 pairwise constraints), reveals several di�erences in the out-
put and provides some insights about the e�ects of the spatial clustering-driven
constraints over the feature-based clustering step.

In particular, we executed 20 randomly initialized instances of the MPCK-

Means and the k-means algorithm and we chose the best result w.r.t. the ob-
jective function. Then, we compared these two results with the 20 resulting
partitions produced by k-means and with the 20 results produced by MPCK-

Means. To measure the partition similarity we used the Adjusted Rand Index,
de�ned in [10]. The results (see Table 3.2) show that the partitions we discov-
ered with our approach on XF are quite di�erent from those that have been
discovered by the unconstrained k-means, even if the Adjusted Rand Index is
still high. We analyze now these di�erences.

In Figure 2 we show the e�ects of combining the two clustering methods from
a di�erent perspective, by comparing the tree variations of a cluster obtained
in three contexts: (1) over the trajectory domain; (2) over the feature domain,
with no information about the clusters found on trajectory data; (3) over the



Selected results No constraints 300 constraints

No.const. 0.764 0.688
300const. 0.619 0.798

Table 1. Adjusted Rand Index for di�erent clustering results.

feature domain and integrating some knowledge of the above mentioned clusters
on trajectories, in the form of constraints. These three variations where found
by selecting a cluster in (3) and its most similar counterparts in (2) and in (1),
similarity being computed as Jaccard's similarity between the corresponding sets
of trajectories.

Comparing Figures 2(a) and 2(b), we can see that the clusters found on
the two universes, separately, are rather di�erent, since contain di�erent trajec-
tories and also cover di�erent regions of space. However, the cluster obtained
by joining information from both the spaces (Figure 2(c)) results in a hybrid
group, containing some of the trajectories of Figure 2(a) and most of those in
Figure 2(b), thus conciliating, to some extent, the structure of the two clusters
found on di�erent spaces. The latter result was obtained by sampling 300 con-
straints from the clusters found on the trajectory space. Finally, in Figure 2(d)
we report a summary of the three clusters shown. As we can see, the average
speed in the cluster found on the trajectory space is much higher than the cor-
responding value in the features-only-generated cluster, and so is the number of
stops per hour. Moreover, dispersion is very high, as compared to the results ob-
tained on the feature space. The introduction of information (constraints) about
the trajectory space changes the average statistics of the cluster signi�cantly �
apparently, by enforcing a selective inclusion of faster and longer trajectories,
that stop much less than their counterpart in the features-only-generated cluster.
Moreover, excepting the case of total distance, the dispersion in the cluster over
features with constraints increases signi�cantly, due to the feature heterogeneity
of the newly introduced trajectories, though keeping on far lower values than
the cluster on the trajectory space.

4 Conclusions and open problems

Clustering in Parallel Universes is a recent �eld of research. Discovering groups
of similar data that coexist in di�erent descriptor spaces is challenging since
usually, di�erent spaces give rise to very di�erent clustering results. Moreover,
each space has its own metrics and often some clustering algorithms are pre-
ferred for some representations of the data. In this paper we introduced a frame-
work that enables to combine di�erent spaces possibly using di�erent clustering
algorithms. We presented an instance of the algorithm on a real data set of
trajectories. We showed that using a pairwise clustering constraints is a promis-
ing way to tackle this problem. However a several problems have to be solved.
First of all, constraint processing has not been integrating in all clustering al-
gorithms, yet. A number of constraint-based solutions have been proposed in



(a) Clustering on X2D (b) Clustering on XF without constraints

(c) Clustering on XF with 300 constraints

Clustering on X2D

Avg Std.Dev.
Distance 12.92 7.65
Speed 32.79 15.96
Stops/km 0.72 0.92
Stops/h 14.9 14.86

Clustering on XF without constraints
Avg Std.Dev.

Distance 14.8 0.83
Speed 3.65 0.33
Stops/km 1.2 0.21
Stops/h 4.31 0.39

Clustering on XF with 300 constraints
Avg Std.Dev.

Distance 16.25 0.7
Speed 4.1 0.42
Stops/km 0.69 0.39
Stops/h 2.81 1.59

(d) Statistics of the clusters

Fig. 2. Sample cluster found through clustering on space, on features and on both



the case of partitional approaches for standard euclidean metrics [17, 16, 5, 12,
2]. Also hierarchical clustering under constraints have been investigated [9], as
well as density-based approaches [15, 6]. Concerning sequence similarities, several
work exist that propose to learn an edit distance [3, 14]. Future work will mainly
focus on the integration of constraints in existing clustering algorithms for tra-
jectories (see, e.g., [13, 8, 11]). Finally, an additional, interesting perspective is to
investigate the possibility of discoverying local patterns (such as frequent item-
sets, bi-clusters, sequential patterns, frequent subgraphs) that coexist in Parallel
Universes.

Acknowledgments This research is partially funded by the EU contract GeoP-
KDD IST-FP6-014915.

References

1. Osman Abul, Francesco Bonchi, and Mirco Nanni. Never walk alone: Uncertainty
for anonymity in moving objects databases. In ICDE, pages 376�385, 2008.

2. S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-
supervised clustering. In Proceedings ACM SIGKDD 2004, pages 59�68, Seattle,
USA, 2004.

3. Marc Bernard, Amaury Habrard, and Marc Sebban. Learning stochastic tree edit
distance. In Johannes Fürnkranz, Tobias Sche�er, and Myra Spiliopoulou, editors,
ECML, volume 4212 of Lecture Notes in Computer Science, pages 42�53. Springer,
2006.

4. Ste�en Bickel and Tobias Sche�er. Multi-view clustering. In ICDM, pages 19�26.
IEEE Computer Society, 2004.

5. Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. Integrating constraints
and metric learning in semi-supervised clustering. In Carla E. Brodley, editor,
ICML, volume 69 of ACM International Conference Proceeding Series. ACM, 2004.

6. Christian Böhm and Claudia Plant. Hissclu: a hierarchical density-based method
for semi-supervised clustering. In EDBT '08: Proceedings of the 11th international
conference on Extending database technology, pages 440�451, New York, NY, USA,
2008. ACM.

7. Lei Chen, M. Tamer Özsu, and Vincent Oria. Robust and fast similarity search
for moving object trajectories. In SIGMOD '05: Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, pages 491�502, New
York, NY, USA, 2005. ACM.

8. D. Chudova, S. Ga�ney, E. Mjolsness, and P. Smyth. Translation-invariant mixture
models for curve clustering. In Proceedings of the 9th International Conference on
Knowledge Discovery and Data Mining (KDD'03), pages 79�88. ACM, 2003.

9. I. Davidson and S. S. Ravi. Agglomerative hierarchical clustering with constraints:
Theoretical and empirical results. In Proceedings PKDD 2005, volume 3721 of
LNCS, pages 59�70, Porto, Portugal, 2005. Springer.

10. L. Hubert and P. Arabie. Comparing partitions. Journal of Classi�cation, 2(1):193�
218, 1985.

11. P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-
temporal data. In Proceedings of 9th International Symposium on Spatial and
Temporal Databases (SSTD'05), pages 364�381. Springer, 2005.



12. Dan Klein, Sepandar D. Kamvar, and Christopher D. Manning. From instance-
level constraints to space-level constraints: Making the most of prior knowledge in
data clustering. In Claude Sammut and Achim G. Ho�mann, editors, ICML, pages
307�314. Morgan Kaufmann, 2002.

13. M. Nanni and D. Pedreschi. Time-focused density-based clustering of trajectories
of moving objects. Journal of Intelligent Information Systems, 27(3):267�289, 2006.

14. Michel Neuhaus and Horst Bunke. Automatic learning of cost functions for graph
edit distance. Inf. Sci., 177(1):239�247, 2007.

15. Carlos Ruiz, Myra Spiliopoulou, and Ernestina Menasalvas Ruiz. C-dbscan:
Density-based clustering with constraints. In 11th International Conference on
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, pages 216�223,
2007.

16. K. Wagsta�, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means clus-
tering with background knowledge. In Proceedings ICML 2001, pages 577�584,
Williamstown, USA, 2001.

17. Kiri Wagsta� and Claire Cardie. Clustering with instance-level constraints. In
Proceedings ICML 2000, pages 1103�1110, Standford, USA, 2000.

18. Bernd Wiswedel and Michael R. Berthold. Fuzzy clustering in parallel universes.
Int. J. Approx. Reasoning, 45(3):439�454, 2007.


