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Abstract. The paper presents a method of interactive construction of
global Hidden Markov Models based on local patterns discovered in se-
quence data. The method works by finding interesting sequences whose
probability in data differs from that predicted by the model. The patterns
are then presented to the user who updates the model using their un-
derstanding of the modelled domain. It is argued that such an approach
leads to more understandable models than automated approaches. An
application to modelling webpage visitors behavior is presented, showing
the strengths of the proposed approach.

1 Introduction

The presented method is based on previous work by Jaroszewicz, Scheffer and
Simovici [6, 4, 5] on interactive construction of Bayesian networks. The overall
approach is briefly described below.

The user provides a (possibly empty) description of their current knowledge
about the domain and a dataset from which new knowledge is to be discovered.
Knowledge description has the form of a global probabilistic model from which
precise probabilistic inference is possible. In [6, 4, 5] a Bayesian network was used
for this purpose due to its flexibility, understandability, as well as the fact that
it represents a full joint probability distribution making inference possible.

Based on the model and data interesting patterns are discovered. A pattern
is defined to be interesting if its probability in data differs significantly from
that predicted by the global model. The patterns are then presented to the
user whose task is to interpret them and update the model. The new model is
then used again together with the data to find a new set of interesting patterns.
In [5] it has been demonstrated that interactive model construction, using human
intelligence in the process, gives models which represent the domain much better
than models built automatically.

In this paper the approach is extended to models involving time, namely
to Hidden Markov Models (HMMs) [9, 12]. The approach works by finding se-
quences whose frequency in the database differs significantly from what the
HMM predicts. Such patterns are considered interesting and are shown to the
user who updates the HMM usually by adding more hidden states, representing



new underlying behavior. The HMM parameters are then retrained using the
Expectation Maximization (EM) algorithm and the process is repeated.

The advantage of such an approach is that the new states have clear, user
given interpretation. The resulting model is thus understandable, and all hidden
states have a clear meaning. This is not possible with automatic methods.

The approach has been tested on the web log of the National Institute of
Telecommunications in Warsaw. The application proved that the proposed ap-
proach is highly practical and produces accurate models which are understand-
able and easy to interpret.

There has been a significant amount of work on mining patterns in sequence
data, full discussion is beyond the scope of this work, see for example an overview
in [8] or in [3].

Section 5 of [8] describes approaches to testing significance of sequence pat-
terns based on comparing with a background model. The purpose however is to
test statistical significance and the models are thus simple (e.g. based on inde-
pendence assumption) and fixed throughout the discovery process, user’s back-
ground knowledge does not come into the picture as it does in our approach.
In [7] a separate small HMM with special structure is built for each temporal
pattern (episode). Such small HMMs are later used for significance testing. The
use of a global model being a mixture of small episode models is alluded to,
but not developed further. Zaiane et al. [13, 10] work on discovering contrast
sequences. This is similar to a single stage of the interactive model building pro-
cess described here, except that one of the datasets is replaced by a HMM. The
overall methodology and the discovery algorithms are thus very different.

2 Definitions and Notation

Vectors are denoted by lowercase boldface letters, and matrices with boldface up-
percase letters. All vectors are assumed to be row vectors, explicit transposition
T is used for column vectors.

Superscripts will be used to denote time and subscripts to denote element
numbers, e.g. π

t
i denotes i-th element of the vector π at time t. Since matrices

will not change with time in our applications, superscripts on matrices will denote
matrix power, e.g. (P)t is the matrix P raised to the power t, parentheses around
the matrix are added to avoid confusion.

2.1 Hidden Markov Models

Let us now define Hidden Markov Models which will be used to describe systems
with discrete time. Only most important facts will be given, full details can be
found in literature [9, 12].

A Hidden Markov Model is a modification of a Markov Chain, such that the
state the model is in is not directly visible. However every state emits output
symbols according to its own probability distribution. For example while mod-
elling webpage visitors’ behavior, the internal states could correspond to visitor’s



intentions (wants to find some specific content) and output symbols to the pages
he/she actually visits.

More formally, an HMM is a quintuple 〈S,O,π0,P,E〉 where S = {s1, . . . , sn}
is a set of states, O = {o1, . . . , om} the set of output symbols, π

0 = (π0
1, . . . ,π

0
n)

the vector of initial probabilities for each state, and P is the transition matrix,
where Pij is the probability of transition from state si to state sj . Finally E is
the emission probability matrix such that Eij gives the probability of observing
symbol oj provided that the HMM is in state si.

Notice that the vector π
t of state probabilities at time t is π

t = π
0(P)t.

Similarly πE is the vector of probabilities of observing each symbol provided
that π is the vector of state probabilities.

We will now discuss how to determine the probability that a given sequence of
output symbols is produced by an HMM. For that aim a key concept of forward
probabilities will be introduced, full details can be found in [9, 12].

Let Ot = o0, o1, . . . , ot be a sequence of symbols, and let qt denote the state
of the HMM at time t. The forward probability of Ot is defined as

α(Ot, i) = Pr{o0, . . . , ot, qt = si},

that is the probability that we have observed the sequence o0, . . . , ot and the
HMM ended up in state si at time t. Grouping the probabilities for all states we
obtain a vector

α(Ot) = (α(Ot, 1), α(Ot, 2), . . . , α(Ot, n)).

The probability of observing a sequence Ot can be computed by summing the
elements of α(Ot).

An important property of the α probabilities is that they can be efficiently
computed using dynamic programming by extending the sequence, symbol by
symbol, using the following formula:

α(o0, . . . , ot, ot+1, i) = α(o0, . . . , ot)P·,iEi,ot+1 . (1)

Another important problem related to HMMs is estimating transition proba-
bilities based on given sequence data. This is usually done using the Baum-Welch
algorithm which is an Expectation Maximization algorithm. The details can be
found in [9, 12] and will be omitted here.

The algorithm only guarantees convergence to a local minimum and has been
reported to be slow. In practice we have noticed the algorithm is very dependent
on the emission probabilities E. If output symbols convey a reasonable amount of
information about internal states, the algorithm converged quickly and reliably.
We consider this to be the practically most useful case; unless the output symbols
provide enough information on the internal state, one cannot expect to properly
identify the underlying behavior.

2.2 Discovery of interesting sequences

The key component of the interactive global HMM model construction using the
proposed framework is finding interesting sequences of output symbols. There



are several ways to formulate the problem. Here we will present one of them,
assuming that provided data contains many sequences each starting at time
t = 0. This approach is suitable for web log analysis which will be presented in
the experimental section.

Let the provided dataset D contain N symbol sequences, each starting at
t = 0,

D = {O1, . . . ,ON},

where Oj = o0, o1, . . . , otj .

Let O = o0, o1, . . . , ot be a sequence of symbols starting at time t = 0. Denote
by PrHMM{O} the probability of observing the sequence O computed from the
HMM. Analogously the probability of observing that sequence in data is denoted
by

PrD{O} =
|{O ′ ∈ D : O is a prefix of O ′}|

|D|
.

A sequence whose probability of occurrence is greater than or equal to ε is called
ε-frequent.

The interestingness of O is defined (analogously to [6]) as

I(O) =
∣

∣PrD{O} − PrHMM{O}
∣

∣ , (2)

that is, as the absolute difference between the probabilities predicted by the
HMM and observed in data. A sequence is called ε-interesting if its interesting-
ness is not lower than ε.

An algorithm for finding all ε-interesting symbol sequences for a user speci-
fied minimum interestingness threshold ε is given in Figure 1. Key steps of the
algorithm are described in detail below.

2.3 Finding frequent sequences in data

There are several algorithms for finding frequent sequences [3]. The situation
presented here is much simpler however, since all sequences are assumed to start
at t = 0, so a simpler approach is used.

First, all sequences in D are sorted in lexicographical order. Then, as the
records are scanned sequentially, each record is compared to the previous one
and their longest common prefix p is found. Counts of all prefixes of p are
incremented by 1. The prefixes of the previous record which are longer than
p will never appear again, so those whose support is lower than ε are removed.

2.4 Finding frequently occurring sequences in the Hidden Markov

Model

This part has been implemented in the style of a depth first version of the well
known Apriori algorithm [1]. We use the fact that appending additional symbols
to a sequence cannot increase its probability of occurrence, so if a sequence
is found to be infrequent, all sequences derived from it can be skipped. The



Input: A Hidden Markov Model HMM , dataset of symbol sequences D, the minimum
interestingness threshold ε

Output: A set of interesting sequences: {O : I(O) ≥ ε}

1. Estimate the parameters π
0, P, E of HMM based on D using the Baum-Welch

algorithm
2. Find the set CD of sequences which are ε-frequent in D

CD = {O : PrD{O} ≥ ε}

3. Find the set CHMM of sequences which are ε-frequent in the HMM

CHMM = {O : PrHMM{O} ≥ ε}

4. Compute PrD{O} for each O ∈ CHMM \ CD

5. Compute PrHMM{O} for each O ∈ CD \ CHMM

6. Compute I(O) for all sequences O ∈ CD ∪ CHMM

7. Return the set {O ∈ CD ∪ CHMM : I(O) ≥ ε}

Fig. 1. The algorithm for finding all ε-interesting sequences with respect to a given
Hidden Markov Model.

sequences are built symbol by symbol and their probability in the HMM is
simultaneously updated using Equation 1. The algorithm is shown in Figure 2.
The + symbol denotes sequence concatenation. In fact the presented algorithm
is very efficient since computing probabilities in HMMs can be done much more
efficiently than computing supports in large datasets.

3 Experimental Evaluation, Mining Webserver Logs

The presented approach will now be evaluated experimentally on a web server
log data. Web log of the server of the National Institute of Telecommunications
in Warsaw has been used. The full data covered the period of about one year, the
first 100000 events have been used for experiments. The presented method has
been used to create a model of behavior of visitors to the Institute’s webpage.

After starting with a simple initial model, new internal states were added
with the assumption that the new states represent underlying patterns of user
behavior such as ‘access to e-mail account through web interface’ or ‘access a
paper in Institute’s journal’. The identification of the underlying behavior and
model updating was done entirely by the user.

3.1 Data preprocessing

Each record in a weblog contains a description of a single event, such as a file
being retrieved. Several items such as date and time of the event, the referenced
file, an error code, etc. are recorded. The expected data format is a database



Input: Hidden Markov Model HMM , minimum support threshold ε

Output: The set of ε-frequent sequences {O : PrHMM{O} ≥ ε}

1. Call FreqHMM(∅, (1, 1, . . . , 1))
2. Return the result set.

3. Function FreqHMM(O, α(O)):
4. If PrHMM{O} =

∑

i
α(O, i) ≥ ε:

5. Add O to the result set
6. For every output symbol o:
7. Compute α(O + o) using Equation 1
8. Call FreqHMM(O + o, α(O + o))

Fig. 2. An algorithm for finding all ε-frequent sequences in a Hidden Markov Model.

of sequences (each sequence corresponding to a single user session) of pages vis-
ited by users. Unfortunately the log does not contain explicit information about
sessions. The data had to be sessionized in order to form training sequences.
There are several sessionizing methods [2, 11]. Here, the simplest method was
used, namely events which were less than 30 minutes apart were considered to
belong to a single session. Despite its simplicity the method worked very well.
Other methods, e.g. involving a limit on total session time were problematic,
e.g. could not handle automated web crawlers’ sessions which were very long.

At the end of each session an artificial QUIT symbol has been added such that
an end of a session could be explicitly modelled.

Another choice that had to be made was the set of output symbols. Since the
server contains a very large number of available files assigning a separate symbol
to every file would have introduced a huge number of output symbols, adversely
affecting the understandability of the model, as the user is often more interested
in the behavior of users at a higher level. To solve this problem only top-level
directory of each accessed file was used as output symbol. As the Institutes
webpage is logically divided into subdirectories such as journal, people etc. such
an approach gives a better overview of users’ behavior than specific files. If finer
level analysis is required it is probably better to build a separate model which
covers only a subset of available pages in greater detail.

3.2 An initial model

As the author had no idea on how an initial model should look like, an empty
model given in Figure 3 was used.

The all state can initially emit any of the symbols present in the log. The
quit state can emit only the artificial QUIT symbol. The model corresponds to
a user randomly navigating from page to page.

As more states are added, emitted symbols will be removed from the all

state. This will allow for better identification of the internal state of the model



1.0 _all_ quit

Fig. 3. An initial HMM describing the behavior of webpage visitors.

0.116693 sophos2a sophos2b
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1
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Fig. 4. The fragment of the HMM model describing connections to the Sophos antivirus
updates.

based on the output symbol, leading to better understandability as well as better
and more efficient parameter estimation using the Baum-Welch algorithm.

3.3 Model construction

We will now describe the most interesting stages of model construction.

The first interesting sequences were related to the Sophos antivirus program
whose updates are available on the intranet. The most interesting sequence was
sophos,sophos; it’s probability in data was 11.48% while the initial model pre-
dicted it to be only 1.17%. The second most interesting sequence was one in
which the sophos directory has been accessed four times. It is interesting that
every session contained either two or four or more accesses to this directory; for
over a year there has not been a single session where the directory would have
been accessed only once or only three times.

In order to correctly predict the probabilities of those sequences the model
has been updated by adding new states shown in Figure 4. Each of the new
states emits only the sophos symbol. In addition that symbol has been removed
from the list of symbols emitted by the all state.

The all sink state is used to model sessions in which, after some initial
sequence, arbitrary pages can be visited. Here it is used to model sessions where
after downloading antivirus updates the visitor moves to another part of the
website.

After the new states have been added, the probabilities of related sequences
were predicted accurately, and new sequences became interesting. The most in-
teresting sequences for the updated model were about the directory journal



0.174907 journal_1

journal_2
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quit
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0.218563 0.157534

0.5068490.335616

Fig. 5. The fragment of the HMM model describing visitors accessing journal articles.

containing the articles published in the Institute’s journal in PDF format. Al-
most 2% of all sessions contained the sequence journal,journal,/favicon.ico,
which according to the model should appear extremely infrequently. In addition
the /favicon.ico file was absent and generated an error.

It turned out that the file /favicon.ico is the default location for a small
icon appearing in the web-browser next to webpage address. On the Institutes
website this file was however located in img/favicon.ico which was marked in
the header of all HTML files. PDF files however did not contain this information
which caused the browser to try the default location, and since the file was not
there trigger an HTTP error.

To model sessions accessing journal pages several states have been added as
shown in Figure 5.

It is interesting that very often the command to access PDF files has been
issued twice in a row. After inspecting the log, it turned out that the transmission
of the same file has often been restarted. The author was not able to explain
this fact.

A large proportion (about 10%) of the sessions was initiated by automated
web crawlers. Such sessions can be easily recognized, as they first access the
/robots.txt file describing the site’s policy towards such visitors. A further 5%
of all sessions were initiated by RSS news readers, primarily Google reader.

Several other states have been added to the model in the above fashion,
e.g. states relating to web interface to e-mail or pages related to conferences
organized at the Institute. We omit the details. The final model is shown in
Figure 6. Despite a fairly large number of states the model is perfectly under-
standable.

The final model predicts the probability of all possible input sequences with
accuracy better than 0.01. We can thus say that either a sequence is modelled
well, or it appears very infrequently and is thus of little importance to the overall
picture of visitors’ behavior.

Let us briefly comment on the efficiency of the proposed approach. Since the
special case of sequences starting at t = 0 is considered, frequent sequence mining
in data and in HMM is very fast. The computation time is almost completely
dominated by the Baum-Welch algorithm. The algorithm can be quite slow, but
we discovered that when the emission probability matrix E provides enough
information about the internal state of the model given an output symbol, the
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Fig. 6. The final HMM model describing website visitor’s behavior

algorithm requires few iterations. This is the case in the presented application,
where many states may emit only a single symbol. The model shown in Figure 6
converged in just five iterations. The computation took about 6 minutes on a
dataset of 100000 log events using a simple Python implementation.

4 Conclusions and future research

An approach to interactive construction of global HMM models based on local
patterns has been presented. The approach is shown experimentally to produce
accurate but easy to understand models. Future work will focus on generalizing
the approach to other types of patterns such as episodes or motifs, and other
types of models such as dynamic Bayesian networks.

Currently all updates to the model have to be done manually by the user.
Although the author believes that the interactive approach has important ad-



vantages, an approach were the HMM is automatically updated based on the
most interesting pattern may also be considered. The model could for example
be a mixture of Episode Generating HMMs as suggested in [7].

The use of other interestingness measures such as Kullback-Leibler divergence
will also be investigated.
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