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Abstract. Supervised learning is characterized by a broad spectrum of
learning problems, often involving structured predictions, including clas-
sification and regressions problems, ranking-based predictions (label and
instance ranking), and ordinal regression in its various forms. All these
different learning problems are typically addressed by specific algorith-
mic solutions. In this paper, we show that the general preference learning
model (GPLM), which is based on a large-margin principled approach,
gives a flexible way to codify cost functions for all the above problems
as sets of linear preferences. Examples of how the proposed framework
can be effectively used to address a variety of real-world applications are
reported showing the flexibility and effectiveness of the approach.

1 Introduction

Supervised learning is probably the most commonly used learning paradigm. In
fact, given “experience” under the form of examples of a target function, i.e.
input-output pairs, it allows to devise practical solutions through a large spec-
trum of learning algorithms. The need for such large spectrum of learning algo-
rithms is, in part, due to the many real-world learning problems which, falling
under the supervised umbrella, are characterized by heterogeneous tasks and
problem-specific learning algorithms for their solution. These include classifica-
tion and regression problems (including multi-label and multi-class classification,
and multivariate regression), as well as ranking-based (either label or instance
ranking) and ordinal regression problems. The typical approach followed to cope
with these complex problems is to map them into a series of simpler, well-known
settings and then to combine the resulting predictions. Often, however, these so-
lutions lack a principled theory and/or require too much computational resources
to be practical for real-world applications.

In this paper we review a general framework encompassing all these super-
vised learning settings, and we show that many supervised learning problems
can actually be modeled through a set of order preferences over the predictions
of the learner. This is done by considering both the different type of predictions
and type of supervision involved in the problem to be solved. Specifically, four
characterizing problem dimensions are taken into account. Firstly, the type of
prediction which is expected. Secondly, the feedback that the nature provides.



Thirdly, the hypothesis space used in the learning process. Finally, the evaluation
which determines how accurate is a learning device.

From a practical point of view, we show how all these supervised tasks can
be addressed in a linear setting, where any problem formulation can be trans-
formed into a binary problem defined on an augmented space, thus allowing
the exploitation of very simple optimization procedures available for the binary
case. We also stress the flexibility of the preference model which allows a user
to optimize the parameters on the basis of a proper evaluation function. In fact,
while in general the goal of a problem in terms of its evaluation function is clear,
a crucial issue in the design of a learning algorithm is how to get a theoretical
guarantee that the defined learning procedure actually minimizes the target cost
function. One advantage of the framework reviewed in this paper is that it de-
fines a very natural and uniform way to devise and code a cost function into a
learning algorithm.

Examples of real-world applications are then discussed. First of all, a quick
overview of a range of problems already successfully addressed by the framework
is recalled. Then, two new applications are discussed in more detail. Specifically,
the first application concerns the problem to select the best candidate for a job
role. This is an instance ranking problem, where, however, only binary super-
vision from the past history is available. In addition to that, concept drift is
present. We show how to cope with it, within the preference model, by exploit-
ing dynamical selected committees of classifiers. The second application concerns
a patent classification task, where patent applications have to be associated to
primary categories as well as secondary categories. This is an example of la-
bel ranking task which cannot be properly addressed by a ordinal regression
approach.

Related Work Some efforts have already been made to give general algorithms
for label ranking tasks. In particular, in [1] the authors show that different label
ranking problems can be cast as a linear problem which is solvable by a percep-
tron in an augmented feature space. In [2] the authors propose a setting in which
a label ranking problem is map into a set of preference graphs and a convex op-
timization problem is defined to solve it. The preference model proposed in [3]
generalizes on these two previous approaches, proposes a more flexible way to
model cost functions for these problems, and gives a kernel based large margin
solution for these kind of tasks. More recently, in [4] a large margin method
to solve single-label problems with structured output is proposed. Even if ap-
plicable in principle, this approach does not seem directly applicable to solve
label ranking tasks as it would require an optimization problem with a different
constraint for each possible (label) ranking. Unfortunately, we are not aware of
works aiming at generalizing instance ranking algorithms.

In Section 2, we review the general preference learning model (GPLM).
Specifically, we show how the preference model generalizes the supervised learn-
ing setting by considering supervision as a partial order of (soft) constraints over



the learner predictions. In addition, we show (Section 2.1) how the suggested
generalization can be instantiated to well-known supervised learning problems.
In the same section, we also discuss a linear model for the learner (Section 2.2)
and issues about evaluation (Section 2.3). Quite general optimization procedures
for training models within the proposed framework are also presented (Section
2.4). In Section 3, different application scenarios are described and discussed. In
particular, it is discussed how the GPLM apply to a job candidate selection task
(Section 3.1) and to a patent classification task (Section 3.2). Finally, in Section
4, some future extensions to the preference framework and final conclusions are
presented.

2 GPLM: A General Model for Supervised Learning

In supervised learning, supervision is assumed to be provided according to an
unknown probability distribution D. Commonly, it is assumed to consist of pairs,
objects (instances) and corresponding expected predictions (labels).

In this paper, we generalize a supervised learning setting by considering su-
pervision as (soft) constraints over the learner predictions, that is constraints
whose violation entails a cost for the solution. Specifically, we assume a learner
makes its predictions on the basis of a set of parameters Θ, characterizing its
hypothesis space. Each supervision constraint S then makes the learner suffering
a cost c(S|Θ). It is easy to notice that this generalizes the above-mentioned case
of supervision as instance-label pairs. In fact, this is obtained when a unitary
cost is given to hypotheses generating incorrect labelings.

Two main types of supervised learning can be identified and generalized. In
the on-line paradigm the probability distribution D is not assumed to be sta-
tionary and learning takes place in rounds. At each step the learner receives
supervision and updates its parameters with the aim to minimize future costs.
In batch learning, the stationary assumption on the probability distribution D
is made and a training set S = {S1, . . . , Sn} is available at the beginning. Su-
pervisions Si are also supposed to be drawn i.i.d. from the same D and a single
training session is made with the explicit goal to minimize the expected cost on
the true distribution D.

Different learning problems are often characterized by different types of pre-
diction and supervision. Nevertheless, we can show that a broad set of them
can be studied in a common framework, whose general setting is as follows. We
consider a space X of objects (or instances) and a space Y of classes (or labels).
In principle, either sets can be infinite. Moreover, we assume the hypothesis
space, based on which the learner makes its predictions, to consist of relevance
functions

u : X × Y → R,

depending on some set of parameters Θ. The goal of the learner is then to select
a function û from its hypothesis space, which is ”consistent” with the supervision
in a sense that will depend on the particular setting.



As for now, we can already notice that given a particular relevance function
û, the instances in X can be ordered basing on their relevance once fixed a label
y ∈ Y, and similarly, labels in Y can be ordered basing on their relevance once
fixed an instance x ∈ X .

2.1 Prediction and Supervision

In this section, we show that by using the setting given above, it is possible
to give a quite detailed taxonomy of the main supervised learning tasks on the
basis of their expected prediction and supervision feedback. To this end, let us
first recall the definition of order relations.

Definition A partial order is a pair (P,º) where P is a set and º is a reflexive,
antisymmetric and transitive binary relation. A partial ranking of length r is a
partial order where the set P can be partitioned in r sets P1, . . . ,Pr such that
z ∈ Pi, z′ ∈ Pj , i < j, implies z º z′ and no further information is conveyed
about the ordering within subsets Pk. A full order on P is defined as a partial
ranking of length |P|. We denote by PO(P), PR(P), and FO(P) the set of
partial orders, partial rankings and full orders over the set P, respectively.

Label Rankings A first important family of supervised learning tasks is related
to the ordering of the classes on the basis of their relevance for an instance, thus
they are characterized by the fact that predictions should be based on a full
order over the labels. This family of problems is referred to as label rankings.
Supervision is in the form of partial orders over the classes. In our notation we
have supervision S ∈ PO(Y) and predictions in FO(Y). Different settings can
be obtained corresponding to different types of supervision. A few well-known
instances are listed in the following:

Category Ranking (CR) In this setting, the goal is to order categories on the
basis of their relevance for an instance. As an example, in a collaborative filtering
setting, users could correspond to our instances and the different movies to our
classes. Then, one could be interested into the ordering (by relevance) of the set
of movies based on user preferences. This is trivially a particular case of label
ranking where supervision is given as full orders over Y.

Bipartite Category Ranking (BCR) In this task, supervision is given as two
groups of classes and it is required to predict full orders in which the first group
of classes is ranked over the second. As a leading example, in information re-
trieval, given a document, one might have to rank the available topics with the
aim to return the most relevant topics on the top of the list. This is again a
specific case of label ranking where supervision is given as partial rankings of
length two. This task has been also referred to as category ranking in literature
[5]. Here a different terminology is adopted to avoid confusion between these two



different tasks.1

We may also be interested in predictions consisting of the most relevant
classes, that is, of a prefix of the full order induced by the relevance function
u(x, y). This family of tasks is commonly referred to as classification problems.
They can however be considered as subcases of the BCR ranking task. A few
examples of this kind of problems, listed by increasing specificity, is given here:

q-label classification (QC) In this task, the goal is to select the q most appro-
priate classes for a given instance, with q fixed. The supervision here is a partial
ranking of length two where a set of exactly q labels are preferred over the rest.

Single-label classification (SC) In this well-known classification task, the goal is
to select exactly one class (the most relevant) for an instance. This is a trivial
subcase of QC with q = 1.

Instance Rankings Another interesting family of tasks is instance rankings
where the goal is to order instances on the basis of the relevance of a given class.
In our notation, predictions are in FO(X ) and supervision is given in the form
S ∈ PO(X ).

The duality with respect to label rankings is self-evident. In principle, a corre-
sponding problem setting could be defined for each of the label ranking settings.
We can easily see that the well-known (Bipartite) Instance Ranking (IR) task,
corresponds to BCR and is the one to induce an order such that a given set
of instances is top-ranked. A natural application of this kind of prediction is in
information retrieval, e.g. when listing the results returned by a search engine.
Another interesting application is the one presented in Section 3.1 for job role
selections. Similarly to BCR, here supervision consists of partial rankings (this
time over the set X ) of length two. Another task which can also be considered
in this family is the one to learn preference relations from a given set of ranked
instances. For example, in information retrieval the task to learn preference re-
lations on the basis of basic preferences given as pairs of documents [6].

The two families of tasks above can be considered qualitative tasks since
they are concerned with order relations between instance-class pairs. On the
other side, quantitative tasks are the ones which are more concerned with the
absolute values of the relevance of instance-class pairs.

Quantitative Predictions Sometimes there is the necessity to do quantitative
predictions about data at hand. For example, in binary classification, one has
to decide about the membership of an instance to a class as opposed to rank

1 Note that this task and the two that follow, are conceptually different from the task to
decide about the membership of an instance. Here, supervision only gives qualitative
information about the fact that some classes are more relevant than others.



instances by relevance. These settings are not directly subsumed by the settings
presented above. As we will see this can be overcome by adding a set of thresholds
and doing predictions based on these thresholds.

Multivariate Ordinal Regression (MOR) There are many settings where it is
natural to rank instances according to an ordinal scale, including collaborative
filtering, where there is the need to predict people ratings on unseen items.
Borrowing the movie-related application introduced above, suitable ranks for
movies could be given as ’bad’, ’fair’, ’good’, and ’recommended’. With no loss in
generality, we can consider the target space as the integer set Z = {0, . . . , R−1}
of R available ranks. Following an approach similar to the one in [7], ranks are
made corresponding to intervals of the real line. Specifically, a set of thresholds
T = {τ0 = −∞, τ1, . . . , τR−1, τR = +∞} can be defined and the prediction based
on the rule

ẑ = {i : u(x, y) ∈ (τi−1, τi)}.
Given the target label z, a correct prediction will be consistent with the condi-
tions: u(x, y) > τi when i < z and u(x, y) < τi when i ≥ z. Note that, a different
threshold set could also be used for different labels. The well-known (Univari-
ate) Ordinal Regression(OR) [8, 9] task is a trivial subcase of MOR when a single
class is available.

Multi-label Classification (MLC) In this task, it is required to classify instances
with a subset (the cardinality of which is not specified) of the available classes.
For us, it is convenient to consider this task as a MOR problem where only two
ranks are available, relevant and irrelevant, and Z = {0, 1}.

The well-known Binary Classification (BC) can be considered a subcase of
OR with two ranks Z = {0, 1}. Note that this task is considered here conceptu-
ally different from SC with two classes.

Clearly, the taxonomy presented above is not exhaustive but well highlights
how many different kinds of structured predictions can be seen as simple con-
straints over the predictions of a learner. Specifically, they consist of constraints
in conjunctive form where each basic preference is defined over the scoring values
and/or a set of threshold values.

In particular, we can differentiate between two types of order preferences:
qualitative preferences in the form

(xi, yr) ¤ (xj , ys)

telling that the value of u(xi, yr) should be higher than the value of u(xj , ys),
and quantitative preferences in the form

(x, y) ¤ τ or τ ¤ (x, y), τ ∈ R
relating the value of u(x, y) to a given threshold τ .

In Table 1, a summary of supervision obtained for the most general settings
are presented. Particular instantiations to more specific problems are immediate.



Setting Supervision P-sets

LR {(x, yr) ¤ (x, ys)}(x,yr)ºS(x,ys)

IR {(xi, y) ¤ (xj , y)}(xi,y)ºS(xj ,y)

MOR {(x, y) ¤ τi}i<z ∪ {τi ¤ (x, y)}i≥z

Table 1. Supervision of problems in Section 2.1. Label and instance rankings (LR and
IR respectively), have a preference for each order relation induced by the supervision
S. In ordinal regression (MOR), a preference is associated to each threshold and z ∈ Z
is the rank given by the supervision.

2.2 A Linear Model for the Learner

In this work, we focus on a simple form of the relevance function, that is

u(x, y) = w · φ(x, y)

where φ(x, y) ∈ Rd is a joint representation of instance-class pairs and w ∈ Rd

is a weight vector [4]. Note that this form generalizes the more standard form
u(x, y) = wy · φ(x) where different weight vectors are associated to different
labels. In fact, let |Y| = m, we can write:

w = (w1, . . . , wm) and φ(x, y) = (0, . . . ,0︸ ︷︷ ︸
y−1

, φ(x),0, . . . ,0).

With this assumption, it is possible to conveniently reformulate an order con-
straint as a linear constraint. Let T = {τ1, . . . , τR−1} be the available thresholds,
in the qualitative case, given λ ≡ (xi, yr) ¤ (xj , ys), we obtain

u(xi, yr) > u(xj , ys) ⇔ (w, τ1, . . . , τR−1) · (φ(xi, yr)− φ(xj , ys), 0, . . . , 0︸ ︷︷ ︸
R−1

)

︸ ︷︷ ︸
ψ(λ)

> 0

Viceversa, in the quantitative case, given δ ∈ {−1,+1}, we have

δ(u(x, y)− τr) > 0 ⇔ (w, τ1, . . . , τR−1) · (δφ(x, y), 0, . . . , 0︸ ︷︷ ︸
r−1

,−δ, 0, . . . , 0︸ ︷︷ ︸
R−r−1

)

︸ ︷︷ ︸
ψ(λ)

> 0.

In general, we can see that supervision constraints of all the above-mentioned
problems, can be reduced to sets of linear preferences of the form w · ψ(λ) > 0
where w = (w, τ1, . . . , τR−1) is the vector of weights augmented with the set of
available thresholds and ψ(λ) is an opportune representation of the preference
under consideration. The quantity

ρA(λ|w) = w · ψ(λ)



will be also referred to as the margin of the hypothesis w.r.t. the preference. Note
that this value is greater than zero when the preference is satisfied and less than
zero otherwise. We will say that a preference λ is consistent with an hypothesis
when ρA(λ|w) > 0. The margin of an hypothesis w.r.t. the whole supervision S
(a partial order), can be consequently defined as the minimum of the margins of
preferences contained in S, i.e.

ρ(S) = min
λ∈S

ρA(λ).

This definition turns out to be consistent with definitions of the margin com-
monly used in different problems. In particular, the margin is positive if and
only if the prediction is consistent with the supervision.

Summarizing, all the problems defined in the taxonomy in Section 2.1 can be
seen as an homogeneous linear binary problem in a opportune augmented space.
Specifically, any algorithm for linear classification (e.g. perceptron or linear pro-
gramming) can be used to solve it, provided the problem has a solution.

2.3 Evaluation and cost optimization

More flexible cost functions, measuring the disagreement between a prediction
(a full order) and the target supervision (a partial order), are often preferred
to the mere consistency of supervision constraints when evaluating a learning
machine. For example, there are settings where the evaluation of a non-perfect
label ranking result can be better described as the number of categories which are
misordered instead of simply as an error. To obtain more flexible cost functions,
the structure of the supervision can be used to map the supervision (a partial
order) into sets of preferences where different costs can be possibly associated
to different preferences.
Similarly to [2], we consider a cost mapping G : S 7→ {g1, . . . , gqS} where each
possible supervision S generates a set of preference graphs. These direct graphs
represent order preferences and are defined on subsets of related pairs in S. To
augment the flexibility of the model we also allow to have different costs γ(λ)
associated to different preferences and this can be represented by associating
costs to the arcs of the graphs.

Now, given a preference graph g, the associated cost suffered by an hypothesis
can be defined as the maximum among the costs of its unfulfilled preferences,
i.e.

c(g|w) = max{γ(λ)|λ ∈ g not fulfilled by w}. (1)

Finally, the total cost suffered by an hypothesis w for the supervision S is defined
as the cumulative cost over all the preference graphs, i.e.

c(S|w) =
qS∑

j=1

c(Gj(S)|w). (2)

Using cost mappings as defined above, we are able to reproduce many of the
different cost functions used for ranking problems. The reader can see [10] for



Methods l(ρ)

Perceptron max(0,−ρ)

β-margin max(0, β − ρ)

Exponential e−ρ

Sigmoidal (1 + eλ(ρ−θ))−1

Table 2. Approximation losses as a function of the margin. β > 0, λ > 0, θ ∈ R are
external parameters.

several examples on how to give a cost map on standard supervised problems.
Moreover, this model can be easily adapted to extend the approach in [4] for
single-label classification to general rankings of structured output.

2.4 Learning with preferences

In earlier sections we have discussed the structure behind the supervision and
how it can be modelled using preference graphs. Now, we see how to give learning
algorithms which are able to optimize the associated cost functions.

Specifically, the purpose of a GPLM based algorithm will be to minimize
costs c(S|w). Since these are not continuous w.r.t. the parameter vector w,
they are approximated by introducing a continuous non-increasing loss function
l : R → R+ approximating the indicator function. The (approximate) cost will
be then defined by

c̃(S|w) =
∑

g∈G(S)

max
λ∈g

γ(λ)l(ρA(λ|w)).

Examples of losses one can use are presented in Table 2.

The goal in batch learning is to find the parameters w such to minimize the
expected cost over D, the actual distribution ruling the supervision feedback,
which is defined by

Rt[w] = ES∼D[c(S|w)].

Although D is unknown, we can still try to minimize this function by exploiting
the same structure of supervision and as much of the information we can gather
from the training set S. The general problem can be given as in the following:

– Given a set V(S) =
⋃

S∈S G(S) of preference graphs
– Find a set of parameters w in such a way to minimize the functional

Q(w) = R(w) + µL(V(S)|w) (3)

where L(V(S)|w) =
∑

S∈S c̃(S|w) is related to the empirical cost and R(w)
is a regularization term over the set of parameters. Note that, for the so-
lution to be admissible when multiple thresholds are used and there are
constraints defined over their values (as in the ordinal regression settings),
these constraints should be explicitly enforced.



The use of a regularization term problems of this type has different motivations,
including the theory on regularization networks (see e.g. [11]). Moreover, we can
see that by choosing a convex loss function and a convex regularization term
(let say the quadratic term R(w) = 1

2 ||w||2) it warranties the convexity of the
functionalQ(w) in Eq. 3 and then the uniqueness of the solution. Indeed, current
kernel-based approaches defined for basic supervised learning tasks can be seen
in this form when using the β-margin with β = 1. This suggests a new universal
kernel method which is able to solve many complex learning tasks [12].

3 GPLM Applications

In this section, we briefly discuss three different previous works which are related
to the preference learning framework presented in this paper.

The first application of the preference learning model to a label ranking
problem was presented in [3]. The proposed kernel method is able to optimize
any conjunctive set of label-based preferences, thus being suitable to any label-
ranking problem. Moreover, it is possible to specify a coding matrix which allows
the embedding of the set of labels in a smaller vector space. Finally, it is shown
how, by means of this matrix, it is possible to generalize different output-coding
schemes, including ECOC, (One Vs All) OvA, and (One Vs One) OvO.

In [10] there is a comparison of different cost mappings and loss functions for
the ordinal regression problem in an on-line setting. The setting on-line and the
huge size of data, have motivated a stochastic version of the general algorithm
we presented in Section 2.4 for the batch setting. Quite interestingly, experi-
ments have shown that using loss functions which nicely approximate the true
evaluation function (0-1 loss function), like the sigmoidal loss for example, gave
far better results w.r.t. hinge loss and similar.

Finally, in [13] there is an application of the model to an interactive classifica-
tion context. In such contexts, differently from autonomous Text Categorization
(TC) systems [14], the system, rather than taking a final categorization deci-
sion, is required to support a human expert who is in charge of taking this
decision. A real-world application that perfectly fits in this scenario is patent
classification [15–17], where experts at international patent offices are presented
with patent applications that they need to classify against a large set of classes
of existing patents, in order to check the novelty of the proposed invention. A
system that ranks the available classes in terms of their estimated suitability to
the document to be classified is extremely useful to these experts since they can
thus concentrate on the top-ranked categories, pretty much as a Web searcher
concentrates on the top-ranked documents returned by a search engine following
a query. Clearly, providing supervision in the form of rankings is more onerous
than providing a crisp membership value to a document (i.e. being relevant or
irrelevant); Then, a mapping which uses membership information to generate
subsumed ranking preferences, is used. For example, we can consider a prefer-
ence like cr ¤d cs (category cr is preferred to category cs for the document d)
whenever d belongs to cr and d does not belong to cs. Experimental compar-



ison between GPLM and standard SVM has been performed showing a large
improvement w.r.t. the precision at recall ranking evaluation measure on the
Reuters-21578 benchmark dataset.

In the following sections, two recent unpublished applications of the GPLM to
a job candidate selection task and to a patent classification task, are presented.

3.1 Job candidate selection as a preferential task

In a candidate selection task for filling a job role, one or more candidates have to
be selected from a pool of candidates. Without loss of generality, let assume that
the k ≥ 1 most suited candidate for the job are selected. This decision is taken
by looking at each candidate professional profile. Moreover, we may assume that
the number k of candidates to select is already known from the beginning. This
last point is very important to model the problem. In fact, a candidate will be
selected on the basis of which other candidates are in the pool. In other words,
no decisions can be taken for a candidate without knowing who else is competing
for the same position(s).

Assume the training set consists of past decisions about promotions to a
given role. Then, for any of these decisions, we know which candidates were in
a selection pool and how many and which candidates were selected for the job.
Thus, it seems natural to interpret any past decision as a set of preferences in
which the k selected candidates were preferred to the others. More formally, we
define Ct = {c1, . . . , cnt} to be the set of candidates for the job role (the pool) at
time t, St = {s(t)

1 , . . . , s
(t)
kt
} the set of candidates which got the promotion, and

Ut = {u(t)
1 , . . . , u

(t)
nt−kt

} the set of candidates which were not selected. Thus, there
is evidence that si was preferred to uj for each i ∈ {1, . . . , kt} and j ∈ {1, . . . , nt−
kt}. Using our notation, we can write si ¤uj . Note that a selection having a pool
of cardinality nt and kt candidates selected for the job, will introduce exactly
kt× (nt−kt) preferences. However, since kt ¿ nt, the order of magnitude is still
linear in the number of candidates.

Why not a simple binary task? One could think of a job role selection as a set-
ting where for each candidate an independent decision is taken. In this case, at
any time t, we would have exactly nt independent decisions (e.g. a +1 decision,
representing that the candidate was selected for the job role, and a -1 decision
representing that the candidate was not selected for the job role). This could
be modeled as a typical binary task where any of the 2nt different outcomes
are possible. However, a job role selection is competitive in its nature, i.e. the
choice of one candidate instead of another is not independent on the other’s
candidates potentials and only a fixed number of candidates can get the pro-
motion. For this reason, the binary task does not seem to be the best choice.
This will be confirmed in the experimental section where we compare the GPLM
model against a binary SVM implementation. Finally, it should be noted that
the problem tends to be highly unbalanced when considered as a binary prob-
lem. In fact, the number of promoted candidates is a very small percentage of



the number of candidates which compete for the promotion. On the other side,
GPLM does not make any additional assumption on the sign of the relevance
function for different candidates but only on the order it induces. This should
make the problem easier and more balanced.

GPLM with SVM In Section 2.2 we have seen that the preferential problem,
i.e. the task to find a linear function which is consistent with a set of preferences,
can be cast as a binary problem. Examples in this case become ψ(λ) = si − uj

for each λ ≡ si ¤ uj . Thus, a standard SVM algorithm applied to this new set
of examples can be used to find a solution to the preferential problem.

Specifically, let Λ = {(S1, U1), . . . , (ST , UT )} be the sets involved in past
promotions given as a training set for a given role, thus the SVM dual problem
will be posed as

arg maxα

∑
t

∑
si∈St

∑
uj∈Ut

α
(t)
ij − 1

2 ||
∑

t

∑
si∈St

∑
uj∈Ut

α
(t)
ij ψ(si ¤ uj)||2

s.t. 0 ≤ α
(t)
ij ≤ µ,

(4)
and the (primal) SVM solution which solves Eq. 3 will be in the form

wSV M =
∑

t

∑

si∈St

∑

uj∈Ut

α
(t)
ij ψ(si ¤ uj).

Note that the kernel computation in this case consists in computing a kernel
between preferences (i.e. dot product between their vectorial representations).
Nevertheless, this kernel can be easily reduced to a combination of simpler kernels
between candidate profiles in the following way:

k̃(c1
i ¤ c1

j , c
2
i ¤ c2

j ) = 〈c1
i − c1

j , c
2
i − c2

j 〉 = 〈c1
i , c

2
i 〉 − 〈c1

i , c
2
j 〉 − 〈c1

j , c
2
i 〉+ 〈c1

j , c
2
j 〉

= k(c1
i , c

2
i )− k(c1

i , c
2
j )− k(c1

j , c
2
i ) + k(c1

j , c
2
j )

where k(ci, cj) = 〈ci, cj〉 is the kernel function associated to the mapping used
for the candidate profiles. In this way, we have reduced a preferential task into
a binary task which can be easily solved by a standard SVM by just redefining
the kernel function suitably.

Furthermore, using the SVM decision function fSV M (λ) = sgn(〈wSV M , ψ(λ)〉)
it is possible to determine if a given order relation is verified between any two
candidates. However, in order to decide which candidates should be selected for
a new event t, kt × (nt − kt) calculations of the above defined function should
be computed to obtain the relative order of candidates.

In the following, we show that the selection can actually be computed in
linear time. To this end, we can decompose the weight vector computed by the
SVM in the following way:

wSV M =
∑

t

∑
ci∈St

∑
cj∈Ut

α
(t)
ij ψ(ci ¤ cj) =

∑
t

∑
ci∈St

∑
cj∈Ut

α
(t)
ij (ci − cj)

=
∑

t

∑
ci∈St

∑
cj∈Ut

α
(t)
ij ci −

∑
t

∑
ci∈St

∑
cj∈Ut

α
(t)
ij cj



fl(ci) c1 c2 c3

p1 2.1 3.4 4.0

p2 1.2 2.9 −1.7

p3 4.7 5.1 2.9
Table 3. RANK function example with Pt = 3, nt = 3. In this case, we would
have RANK(p2) = 2 as p2 is the third ranked in the series {4.0,2.9,5.1}, while
RANK(x2|p2) = 0 as c2 is the best ranked in the row p2, i.e. in the series {1.2,2.9,-
1.7}. Maximum score values obtained over different candidates by each predictor are
emphasized.

This decomposition allows us to decouple, in the computation of the relevance
function for a new candidate, the contribution of candidate profiles given in the
training set

f(c) = 〈wSV M , c〉 =
∑

t

∑
ci∈St

(
∑

cj∈Ut
α

(t)
ij )〈ci, c〉 −

∑
t

∑
cj∈Ut

(
∑

ci∈St
α

(t)
ij )〈cj , c〉

=
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t

∑
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(
∑

cj∈Ut
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(t)
ij )k(ci, c)−

∑
t

∑
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(
∑

ci∈St
α

(t)
ij )k(cj , c)

=
∑

t

∑
ci∈St

α
(t)
i k(ci, c)−

∑
t

∑
ci∈St

α
(t)
j k(cj , c)

Hence the relevance function can be directly computed by post-processing the
output of the SVM (the α vector) and then building a new model as follows

f(c) =
∑

cs
βsk(cs, c)

where βs =
∑

t:cs∈St
α

(t)
s −∑

t:cs∈Ut
α

(t)
s . The new model defined by the β’s can

directly be used by a SVM, and it returns the correct relevance for any candidate.

Committee of GPLM models The job role selection task is particularly
prone to concept drift phenomena as there is not any guarantee that criteria
used in previous selections will be used again in the future (e.g. because people
in charge to decide can change over time). In this cases, it can be useful to add
experts to a committee as new chunk of data arrive. We assume that the size of
the chunk with which we create new experts is fixed a priori. The problem here
is then how to decide which predictors is better to use on never seen instances.
This problem gives us an interesting example of application where it is useful to
combine multiple rankings.

In the following, we describe a family of strategies to selecting and combin-
ing the (preferential) expert predictions in the committee. At each time t, we
consider a set of candidates Ct = {c1, . . . , cnt} which represents the pool for
a new job role selection and we consider the set of experts Pt = {p1, . . . , pmt}
available a time t. Each individual expert, let say pl, produces a score fl(ci) for
each candidate ci, i = 1, . . . , nt. Thus, a matrix similar to the one given as an
example in Table 3, can be defined, where rows contain the values of the score
functions fl(ci) over the candidates for a given expert, and columns are the val-
ues of the score function fl(ci) given by different experts on the same candidate.



Based on this matrix, it is possible to define two ranking functions which will be
used in the following. Specifically, RANK(ci|pl) ∈ {0, . . . , nt−1} which gives the
rank of candidate ci induced by the ordered series of score values given by the
expert pl (lower ranks mean highest values), and RANK(pl) ∈ {0, . . . , mt − 1}
which gives the relative rank of the expert pl relatively to the ordered series of
values obtained by using the maximum score obtained over all candidates, i.e.
maxi fl(ci). This last value may be interpreted as a measure of confidence (or
closeness) of the expert pl w.r.t. the current pool.

The score matrix above is then used to define a family of strategies to combine
the experts in a committee which can be used to give the final rank of candidates
in the pool. To this aim, we propose to use the following general formula:

score(c) =
mt∑

l=1

Il(r)Sl(c)

where Il(r) is the selector function which selects the r most “reliable” experts,
r ≤ mt , and Sl(c) is the scoring function which represents “how much” each
expert contributes to the overall prediction. Specifically, a dynamical selection
of experts can be obtained by defining Il as follows:

Il(r) =
{

1 if RANK(pl) ≤ r − 1
0 otherwise

returning the r experts estimated to be closer to the pool under consideration.
Note that, the temporal window method with window size r, can be imple-

mented by slightly changing the selector function as follows:

I
(tw)
l (r) =

{
1 if mt − r < l ≤ mt

0 otherwise

The scoring function Sl is then chosen between the following:

S
(1)
l (c) = fl(c)

S
(2)
l (c) = RANK(c|pl)

Specifically, for the dynamical selection we obtain the following four strategies:

– Sum of scores: the sum of the scores of the r-closest experts by using Il(r)
and S

(1)
l .

– Maximum of scores: the score of the closest expert by using Il(1) and
S

(1)
l .

– Minimal position: the minimal rank position of the closest predictor by
using Il(1) and S

(1)
l .

– Sum of position: the sum of the rank positions of the r-closest experts by
using Il(r) and S

(2)
l .



Experimental setting Our data was collected from the Human Resources data
warehouse of a bank. Specifically, we have considered all the events related to the
promotion of an employee to the job role of director of a branch office (target job
role). The data used ranges from January 2002 to November 2007. Each event
involves from a minimum of 1 promotion up to a maximum of 7 simultaneous
promotions. Since for each event a short list of candidates was not available,
we were forced to consider as candidates competing for the promotion(s) all the
employees which at the time of the event were potentially eligible for promotion
to the target job role. Because of that, each event t typically involves kt “posi-
tive” examples, i.e. the employees that were promoted, and nt À kt “negative”
examples, i.e. eligible employees that were not promoted. As already stated, kt

ranges from 1 to 7, while nt ranges (approximately) from 3, 700 to 4, 200, for
a total of 199 events, 267 positive examples, and 809, 982 negative examples2.
Each candidate is represented, at the time of the event, through a profile in-
volving 102 features. Of these features, 29 involve personal data, such as age,
sex, title of study, zone of residence, etc., while the remaining 73 features codify
information about the status of service, such as current office, salary, hours of
work per day, annual assessment, skills self-assessment, etc. The features, and
the way they are numerically coded, were chosen in such a way that it is impos-
sible to recognize the identity of an employee from a profile. Moreover, we were
careful in preserving, for each numerical feature, its inherent metric if present,
e.g. the ZIP codes where redefined so that the geographic degree of proximity
of two areas is preserved in the numerical proximity of the new codes associated
to these two areas.

Results In order to test whether learning preferences was better than using a
binary classifier where binary supervision is used for training and the score of
the resulting classifier used to rank the instances belonging to the same event,
we have performed a set of preliminary experiments on a representative subset
of the whole dataset. The binary classifier was an SVM with gaussian kernel
and the values to use for the hyperparameters were decided through a valida-
tion set. The gaussian kernel was used also for learning preferences. The results
showed that it is better to learn preferences as the SVM obtained a total accu-
racy of 61.88% versus an accuracy of 76, 20% obtained for the approach based
on learning preferences. The accuracy measures how many ranking relations are
correctly predicted. The cost mapping we used for the GPLM is the one de-
scribed in Section 3.1 that is each training selection was mapped into the set
of preferences obtained between any ”selected” profile and any ”not selected”
profile. The SVMlight [18] implementation has been used for all the experiments.

In Table 4 we have reported the cumulative performance obtained on the test
set by the committees with dynamical selection. Note that, with the exception of
the first case (chunk size 4), the best results are obtained by a single expert. This
could seem a surprising result but it is probably due to the strong concept drift
2 Note that the same employee can play the role of negative example in several events.

Moreover, it might also be a positive example.



present in our dataset. This implies that choosing the “right” expert pays more
than using a committee of experts. However, it is possible to clearly observe that
the best aggregation rule is the ranking-based min pos rule which seems reason-
able given that predictors are built by considering this ranking information.

3.2 Three-layered patent classification as a preferential task

In many applicative contexts in which textual documents are labelled with the-
matic categories, a distinction is made between the primary and the secondary
categories that are attached to a given document. The primary categories repre-
sent the topics that are central to the document, while the secondary categories
represent topics that the document somehow touches upon, albeit peripherally.
For instance, when a patent application is submitted to the European Patent
Office (EPO), a primary category from the International Patent Classification
(IPC) scheme3 is attached to the application, and that category determines the
expert examiner who will be in charge of evaluating the application. Secondary
categories are instead attached for the only purpose of identifying related prior
art, since the appointed expert examiner will need to determine the novelty of the
proposed invention against existing patents classified under either the primary
or any of the secondary categories. For the purposes of EPO, failing to recognize
the true primary category of a document is thus a more serious mistake than
failing to recognize a true secondary category. Another instance is represented
by the ACM Computing Reviews magazine4, which publishes reviews of articles
and books related to computer science, each classified according to one primary
and several secondary categories from the ACM Computing Classification Sys-
tem5. Here the primary category determines in which section of the magazine
the review is going to be printed, while secondary categories, together with the
primary category, are used for facilitating search (e.g., allowing a user to search
only the reviews belonging to a particular category). Again, for the purposes of
ACM Computing Reviews, getting the primary category of a document wrong
is thus a more serious mistake than failing to recognize a true secondary category.

We now propose GPLM models for the principled solution of the three-layered
classification task. Let d denote a document having the set P (d) = {cp} (a sin-
gleton) as the set of its primary categories, S(d) = {cs1 , . . . , csk

} as the (possibly
empty) set of its secondary categories, and N(d) = {cn1 , . . . , cnl

} as the set of
its non-categories, such that C = P (d) ∪ S(d) ∪N(d).

GPLM: Ordinal Regression for three-layered classification. One could be tempted
to interpret the three-layered classification problem as a (multi-variate) ordinal
regression (MOR) problem, i.e. the problem to give a rank from the ordered set
{primary, secondary, non-category} to each category for an instance.

3 http://www.wipo.int/classifications/en/
4 http://www.reviews.com/
5 http://www.acm.org/class/1998/
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Fig. 1. GPLM mapping for ordinal-regression supervision.

In the following, we first give a GPLM mapping already presented in [19]
which can be demonstrated to be equivalent to the ordinal regression method in
[20]. Then, we discuss why, in our opinion, this setting does not exactly match
the three-layered classification in the patent classification application. Our ex-
periments, which will be reported in the following, will support this claim.

For ordinal regression, a GPLM model is built by considering two thresholds
(see Fig. 1), let say τp and τs. For each training document, the relevance function
of a primary category should be above the threshold τp, while the relevance func-
tion for any other category (either secondary or non-category) should be below
the threshold τp. On the other hand, the relevance function of any secondary
category should be above the threshold τs, while any non-category should be
below the threshold τs. Summarizing, the preference graph for a given training
document will be as in Figure 1. As a simple example, consider the set of cate-
gories C = {c1, c2, c3, c4, c5} and a training document d such that P (d) = {c1},
S(d) = {c2, c3}, and N(d) = {c4, c5}. The set of preferences we generate is

Λ = {(c1 ¤d τp), (τp ¤d c2), (τp ¤d c3), (c2 ¤d τs), (c3 ¤d τs), (τs ¤d c4), (τs ¤d c5)}

Finally, three-layered classification will be performed by selecting the cate-
gory reaching the highest relevance score as primary category, and among the
others, all the categories reaching a relevance score above the threshold τs, as
secondary categories.

At this point, we can discuss a little more about the OR-based preference
model. In particular, in (multi-variate) ordinal regression, it is assumed that, for
each document, the rank given to a category is independent from the rank given
to other categories. This assumption would be reasonable when discriminating
between relevant categories (primary and secondaries) and non-categories, since
this is not a ”competitive” decision, but is far less reasonable when one has to
choose exactly one (the most relevant) among relevant categories as the primary
category for a document, since in this case we actually have a ”competitive”
decision. Thus, in this last case, the choice of the primary category is strongly
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Fig. 2. GPLM mapping for supervision with (a) non-empty secondary category set and
(b) empty secondary category set.

dependent on which are the relevant categories. This difference recalls the dif-
ference between single-label classification (which is competitive) and multi-label
classification (which is not competitive) in multi-class classification tasks. In
other words, requiring the relevance score for the primary category to be higher
than a given threshold seems an unnecessary constraint which eventually could
lead to a deteriorate overall performance.

GPLM: Ad-hoc mapping for three-layered classification. A variant of the ordinal
regression scheme, which seems more suitable for the task of three-layered clas-
sification, can be built as follows. Let interpret the primary category as the most
relevant among relevant categories. This constraint is introduced by the inser-
tion of a set of qualitative preferences between the primary and all the secondary
categories. Moreover, given the multi-label nature of the problem to discern the
secondary categories with respect to the remaining categories, a single threshold
τ on the relevance scores has to be added between the secondary categories and
the non-categories. The categories reaching a relevance score above the thresh-
old (apart from the one recognized as the primary category) will be predicted as
secondary categories. See Figure 2(a) for a graphical representation of this kind
of preference model. Note that whenever S(d) = ∅, this means that the relevance
values for categories in C \ P (d) are all below the threshold. To cope with this
situation, the qualitative preferences can be collapsed into a direct quantitative
preference between the primary category and the threshold. See Figure 2(b) for
a graphical description of this kind of preference. As a simple example, consider
the set of categories C = {c1, c2, c3, c4, c5} and a training document d such that
P (d) = {c1}, S(d) = {c2, c3}, and N(d) = {c4, c5}. The set of preferences we
generate is

Λ = {(c1 ¤d c2), (c1 ¤d c3), (c2 ¤d τ), (c3 ¤d τ), (τ ¤d c4), (τ ¤d c5)}

Similarly, if d is instead such that P (d) = {c1}, S(d) = ∅, N(d) = {c2, c3, c4, c5},
this will generate the set of preferences

Λ = {(c1 ¤d τ), (τ ¤d c2), (τ ¤d c3), (τ ¤d c4), (τ ¤d c5)}



Experimental setting We have evaluated our method on the WIPO-alpha
dataset, a large (3GB) collection published by the World Intellectual Property
Organization (WIPO) in 2003. The dataset consists of 75,250 patents classified
according to version 8 of the International Patent Classification scheme (IPC).
Each document d has one primary category (known as the main IPC symbol of
d), and a variable (possibly null) number of secondary categories (the secondary
IPC symbols of d). In order to avoid problems due to excessive sparsity, and
consistently with previous literature [15], we only consider categories at the
subclass level of the IPC scheme; each of the 630 IPC subclasses is thus viewed
as containing the union of the documents contained in its subordinate groups.

WIPO-alpha comes partitioned into a training set Tr of 46,324 documents
and a test set Te of 28,926 documents. Each category appears as primary cate-
gory in at least 20 and at most 2,000 training documents, and of at least 10 and
at most 1,000 test documents; each category appears as secondary category in
at least 1 and at most 1,857 training documents, and of at least 1 and at most
1,621 test documents. The percentage of documents which are associated to at
least one secondary category is 34% in the training set and 33% in the test set;
most documents have thus no secondary categories attached. Categories that are
attached as secondary categories to at least 10 documents are 62% of the total
set of categories for the training set and 39,7% for the test set.

In our experiments we use the entire WIPO-alpha set of 75,250 documents.
Each document includes a title, a list of inventors, a list of applicant companies
or individuals, an abstract, a claims section, and a long description. Similarly
to [15] we have only used the title, the abstract, and the first 300 words of the
“long description” Preprocessing has been obtained by performing stop word
removal, punctuation removal, down-casing, number removal, and Porter stem-
ming. Vectorial representations have been generated for each document by the
well-known “ltc” variant of cosine-normalized tfidf weighting.

Two additional baseline methods have been defined. In the first baseline
(dubbed “Baseline1’), a binary classifier is built for each c ∈ C (by using as
positive examples of category ci all the documents that have ci either as a pri-
mary or as a secondary category) and use the real-valued scores output by each
classifier for d: the category for which the largest score has been obtained would
be selected as the primary category, while the set of secondary categories could
then be identified by optimizing a threshold for each individual category and
selecting the categories whose associated classifier has returned a score above its
associated threshold. We have indeed implemented this approach (by using stan-
dard binary SVMs). A slightly stronger approach (dubbed “Baseline2’) consists
in performing two different classification tasks, a first one (by means of a SVM-
DDAG [21] single-label classifier hP ) aimed at identifying the primary category
of d, and a second one (by means of a multi-label classifier hS consisting of m
SVM-based binary classifiers hi

S , one for each category ci ∈ {c1, . . . , cm}) aimed
at identifying, among the remaining categories, the secondary categories of d.
The hP classifier is trained by using, as positive examples of each ci, only the
training documents that have ci as primary category. Each of the hi

S is instead



trained by using as positive examples only the training documents that have ci as
secondary category, and as negative examples only the training documents that
have ci as non-category (those that have ci as primary category are discarded).

Results The results obtained for the different classifiers are summarized in Ta-
ble 5. Ad-hoc evaluation measures have been used. In particular, the F1 measure
is computed for each pair of layers and then combined to form a single measure
F 3

1 . The first two rows report the performances of the two baseline classifiers.
It can be observed that they have almost identical F 3

1 and are not so good in
telling apart secondary categories from non-categories (FSN

1 ). The third row
reports the performance of the ordinal regression classifier, which turns out to
have the best separation between primary and non-categories (FPN

1 ) but a quite
low performance on separating primary and secondary categories (FPS

1 ). These
results seem coherent with the analysis we have given in Section 3.2 as the sepa-
ration between primary categories and non-categories is over-constrained by the
ordinal regression model. The overall performance (F 3

1 ) slightly improves over
the baseline classifiers. The fourth row reports the performance of the GPLM
using an own implementation of the Kernel-Adatron [22] as optimizer. With
respect to the baselines and the ordinal regression classifier, there is a clear im-
provement on FSN

1 , while FPS
1 decreases. Overall, however, there is a significant

improvement in F 3
1 .

4 Conclusion and future extensions

We have discussed a general preference model for supervised learning and appli-
cations to complex prediction problems, as job selection and patent classification.
The first application is an instance-ranking problem in presence of concept drift.
We suggested to use a committee of preferential models and proposed a set of
strategies to select predictors and combine their predictions. The second applica-
tion is a label-ranking problem where categories have to be associated to patents
according to a three-layered structure (primary, secondary, non-category). A
preference model ad hoc for this problem has been also proposed.

The interesting aspect of the proposed preference model is that it allows
to codify cost functions as preferences and naturally plug them into the same
training algorithm. In this view, the role of the cost functions resembles the role
of kernels in kernel-machines. Moreover, the proposed method gives a tool for
comparing different algorithms and cost functions on a same learning problem.

In the future, it would be interesting to explore extensions to the model, in-
cluding: (i) Considering models with disjunctive preferences as it would increase
the flexibility of the model. (ii) Studying new fast (approximate) algorithms
when the number of examples/preferences are simply too large to be coped with
standard learning algorithms. (iii) Extending the concept of preferences to pref-
erences to a given degree, i.e. when a preference constraint have to be fulfilled
with a given margin.



Chunk Rule r = 1 r = 3 r = 5 r = 7 r = 9
size

max 82.15 72.40 71.68 68.83 69.18
4 sum 83.50 80.53 80.04 77.71

min pos 86.06 85.77 85.00 85.36
sum pos 79.61 75.96 73.96 72.57

max 84.27 71.26 73.06 72.30 72.86
5 sum 78.84 79.02 78.07 76.64

min pos 80.73 82.73 81.82 81.22
sum pos 76.97 73.08 70.79 70.73

max 86.83 67.70 66.11 65.17 67.72
6 sum 79.02 72.48 67.90 67.87

min pos 85.25 84.40 83.04 82.46
sum pos 73.73 66.97 64.41 64.05

Table 4. Cumulative performance of dynamical selection committees with r ∈
{1, 3, 5, 7, 9} and the four aggregation rules.

F PS
1 F SN

1 F PN
1 F 3

1

Baseline1 .851 .180 .482 .499

Baseline2 .886 .200 .464 .504

Ordinal Regression .7847 .1774 .5343 .5077

GPLM Adatron .8433 .2138 .5129 .5206

Table 5. Micro-averaged F 3
1 values obtained by the classifiers.
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