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Abstract. In this paper, we introduce a new instance-based approach to
the label ranking problem. This approach is based on a probability model
on rankings which is known as the Mallows model in statistics. Proba-
bilistic modeling provides the basis for a theoretically sound prediction
procedure in the form of maximum likelihood estimation. Moreover, it
allows for complementing predictions by diverse types of statistical infor-
mation, for example regarding the reliability of an estimation. Empirical
experiments show that our approach is competitive to start-of-the-art
methods for label ranking and performs quite well even in the case of
incomplete ranking information.

1 Introduction

The topic of learning preferences has attracted increasing attention recently and
contributes to the more general trend of investigating complex and structured
output spaces in machine learning, such as label sequences or natural language
parsing trees [1, 2]. Label ranking, a particular preference learning scenario, stud-
ies the problem of learning a mapping from instances to rankings over a finite
number of predefined labels. It can be considered as a natural generalization of
the conventional classification problem, where only a single label is requested
instead of a ranking of all labels. Applications of label ranking can be found in
various fields such as, e.g., natural language processing and document catego-
rization.

Various approaches for label ranking have been proposed in recent years.
Typically, these are extensions of learning algorithms used in binary classifica-
tion problems. Ranking by pairwise comparison (RPC) is a natural extension of
pairwise classification, in which binary preference models are learned for each
pair of labels, and the predictions of these models are combined into a ranking
of all labels [3]. Two other approaches, constraint classification (CC) and log-
linear models for label ranking (LL), seek to learn linear utility functions for
each individual label instead of preference predicates for pairs of labels [4, 5].

In this paper, we are interested in yet another alternative, namely the use
of an instance-based approach. Instance-based or case-based learning algorithms
have been applied successfully in various fields, such as machine learning and



pattern recognition, for a long time [6, 7]. These algorithms simply store the
training data, or at least a selection thereof, and defer the processing of this
data until an estimation for a new instance is requested, a property distinguishing
them from typical model-based approaches. Instance-based approaches therefore
have a number of potential advantages, especially in the context of the label
ranking problem.

As a particular advantage of delayed processing, these learning methods may
estimate the target function locally instead of inducing a global prediction model
for the entire input domain (instance space) X. Predictions are typically obtained
using only a small, locally restricted subset of the entire training data, namely
those examples that are close to the query x ∈ X (hence X must be endowed
with a distance measure). These examples are then aggregated in a reasonable
way. For example, in conventional classification, the class labels of the query’s
neighbors are usually aggregated by majority voting. As aggregating a finite
set of objects from an output space Ω is often much simpler than representing
a complete X → Ω mapping in an explicit way, instance-based methods are
especially appealing if Ω has a complex structure.

In label ranking, Ω corresponds to the set of all rankings of an underlying
label set L. To represent an Ω-valued mapping, the aforementioned model-based
approaches encode this mapping in terms of conventional binary models, either
by a large set of such models in the original label space L (RPC), or by a
single binary model in an expanded, high-dimensional space (CC, LL). As an
aside, we note that this transformation of a label ranking problem, either into
several simple or into a single complex binary problem, can also come along
with a loss of information, which is caused by decomposing complete rankings
into several binary preferences [8]. Since for instance-based methods, there is no
need to represent an X → Ω mapping explicitly, such methods can operate on
the original target space Ω directly.

The paper is organized as follows: In Section 2, we introduce the problem
of label ranking in a more formal way. The core idea of our instance-based
approach to label ranking, namely maximum likelihood estimation based on a
special probability model for rankings, is discussed in Section 4. The model itself
is introduced beforehand in Section 3. Section 5 gives an overview of related
work, and Section 6 is devoted to experimental results. The paper ends with
concluding remarks in Section 7.

2 Label Ranking

Label ranking can be seen as an extension of the conventional setting of classifica-
tion. Roughly speaking, the former is obtained from the latter through replacing
single class labels by complete label rankings. So, instead of associating every
instance x from an instance space X with one among a finite set of class labels
L = {λ1 . . . λm}, we now associate x with a total order of the class labels, that
is, a complete, transitive, and asymmetric relation �x on L where λi �x λj
indicates that λi precedes λj in the ranking associated with x. It follows that a



ranking can be considered as a special type of preference relation, and therefore
we shall also say that λi �x λj indicates that λi is preferred to λj given the
instance x. To illustrate, suppose that instances are students (characterized by
attributes such as sex, age, and major subjects in secondary school) and � is a
preference relation on a fixed set of study fields such as Math, CS, Physics.

Formally, a ranking �x can be identified with a permutation πx of the set
{1 . . .m}. It is convenient to define πx such that πx(i) = πx(λi) is the position
of λi in the ranking. This permutation encodes the (ground truth) ranking:

λπ−1
x (1) �x λπ−1

x (2) �x . . . �x λπ−1
x (m) ,

where π−1
x (j) is the index of the label at position j in the ranking. The class

of permutations of {1 . . .m} (the symmetric group of order m) is denoted by
Ω. By abuse of terminology, though justified in light of the above one-to-one
correspondence, we refer to elements π ∈ Ω as both permutations and rankings.

In analogy with the classification setting, we do not assume that there exists
a deterministic X → Ω mapping. Instead, every instance is associated with a
probability distribution over Ω. This means that, for each x ∈ X, there exists a
probability distribution P(· |x) such that, for every π ∈ Ω,

P(π |x) (1)

is the probability that πx = π. In the above example, the following probability
distribution may be given for a particular x:

label ranking τ P(τ |x)
Math � CS � Physics .4
Math � Physics � CS .3
CS � Math � Physics .0
CS � Physics � Math .2

Physics � Math � CS .0
Physics � CS � Math .1

The goal in label ranking is to learn a “label ranker” in the form of an X→ Ω
mapping. As training data, a label ranker uses a set of example instances xk,
k = 1 . . . n, together with information about the associated rankings πxk

. Ideally,
complete rankings are given as training information. From a practical point of
view, however, it is also important to allow for incomplete information in the
form of a ranking

λπ−1
x (i1)

�x λπ−1
x (i2)

�x . . . �x λπ−1
x (ik) ,

where {i1, i2 . . . ik} is a subset of the index set {1 . . .m} such that 1 ≤ i1 <
i2 < . . . < im ≤ m. For example, for an instance xk, it might be known that
λ2 �xk

λ1 �xk
λ5, while no preference information is given about the labels λ3,

and λ4.
To evaluate the predictive performance of a label ranker, a suitable loss func-

tion on Ω is needed. In the statistical literature, several distance measures for



rankings have been proposed. One commonly used measure is the number of
discordant pairs,

D(π, σ) = { (i, j) |π(i) > π(j) and σ(i) < σ(j) } , (2)

which is closely related to the Kendall tau-coefficient. In fact, the latter is a
normalization of (2) to the interval [−1, 1] that can be interpreted as a correlation
measure (it assumes the value 1 if σ = π and the value−1 if σ is the reversal of π).
We shall focus on (2) throughout the paper, even though other distance measures
can of course be used. A desirable property of any distance D(·) is its invariance
toward a renumbering of the elements (renaming of labels). This property is
equivalent to the right invariance of D(·), namely D(σν, πν) = D(σ, π) for all
σ, π, ν ∈ Ω, where σν = σ ◦ν denotes the permutation i 7→ σ(ν(i)). The distance
(2) is right-invariant, and so are most other commonly used metrics on Ω.

3 The Mallows Model

So far, we did not make any assumptions about the probability measure (1)
despite its existence. To become more concrete, we resort to a distance-based
probability model introduced by Mallows [9]. The standard Mallows model is a
two-parameter model that belongs to the exponential family:

P(σ | θ, π) =
exp(θD(π, σ))

φ(θ, π)
, (3)

where the two parameters are the location parameter (modal ranking, center
ranking) π ∈ Ω and the spread parameter θ ≤ 0. For right-invariant metrics,
it can be shown that the normalization constant does not depend on π and,
therefore, can be written as a function φ(θ) of θ alone. This is due to

φ(θ, π) =
∑
σ∈Ω

exp(θD(σ, π))

=
∑
σ∈Ω

exp(θD(σπ−1, e))

=
∑
σ′∈Ω

exp(θD(σ′, e))

= φ(θ) ,

where e = (1 . . . n) is the identity ranking. More specifically, it can be shown
that the normalization constant is given by [10]

φ(θ) =
n∏
j=1

1− exp(jθ)
1− exp(θ)

, (4)

and that the expected distance from the center is

E [D(σ, π) | θ, π] =
n exp(θ)

1− exp(θ)
−

n∑
j=1

j exp(jθ)
1− exp(jθ)

. (5)



Obviously, the Mallows model assigns the maximum probability to the cen-
ter ranking π. The larger the distance D(σ, π), the smaller the probability of σ
becomes. The spread parameter θ determines how quickly the probability de-
creases, i.e., how peaked the distribution is around π. For θ = 0, the uniform
distribution is obtained, while for θ → −∞, the distribution converges to the
one-point distribution that assigns probability 1 to π and 0 to all other rankings.

4 Learning and Inference

Coming back to the label ranking problem and the idea of instance-based learn-
ing, consider a query instance x ∈ X and let x1 . . .xk denote the nearest neigh-
bors of x (according to an underlying distance measure on X) in the training set,
where k ∈ N is a fixed integer. Moreover, let σ1 . . . σk ∈ Ω denote the rankings
associated, respectively, with x1 . . .xk.

In analogy to the conventional settings of classification and regression, in
which the nearest neighbor estimation principle has been applied for a long
time, we assume that the probability distribution P(· |x) on Ω is (at least ap-
proximately) locally constant around the query x. By furthermore assuming in-
dependence of the observations, the probability to observe σσσ = {σ1 . . . σk} given
the parameters (θ, π) becomes

P(σσσ | θ, π) =
k∏
i=1

P(σi | θ, π)

=
k∏
i=1

exp (θD(σi, π))
φ(θ)

=
exp
(
θ(D(σ1, π) + . . .+D(σk, π))

)
φk(θ)

=
exp

(
θ
∑k
i=1D(σi, π)

)
(∏n

j=1
1−exp(jθ)
1−exp(θ)

)k .

(6)

The maximum likelihood estimation (MLE) of (θ, π) is then given by those pa-
rameters that maximize this probability. It is easily verified that the MLE of π
is given by

π̂ = arg min
π

k∑
i=1

D(σi, π), (7)

i.e., by the (generalized) median of the rankings σ1 . . . σk. Moreover, the MLE of
θ is derived from the average observed distance from π̂, which is an estimation
of the expected distance E [D(σ, π)|θ, π]:

1
k

k∑
i=1

D(σi, π̂) =
n exp(θ)

1− exp(θ)
−

n∑
j=1

j exp(jθ)
1− exp(jθ)

. (8)



Since the right-hand side of (8) is monotone increasing, a standard line search
quickly converges to the MLE [10].

Now, consider the more general case of incomplete preference information,
which means that a ranking σi does not necessarily contain all labels. The prob-
ability of σi is then given by

P(E(σi)) =
∑

σ∈E(σi)

P(σ | θ, π) ,

where E(σi) denotes the set of all consistent extensions of σi: A permutation
σ ∈ Ω is a consistent extension of σ if it ranks all labels that also occur in σi in
the same order.

The probability of observing the neighbor rankings σσσ = (σ1 . . . σk) then be-
comes

P(σσσ | θ, π) =
k∏
i=1

P(E(σi) | θ, π)

=
k∏
i=1

∑
σ∈E(σi)

P(σ | θ, π)

=

∏k
i=1

∑
σ∈E(σi)

exp (θD(σ, π))(∏n
j=1

1−exp(jθ)
1−exp(θ)

)k .

(9)

Computing the MLE of (θ, π) by maximizing this probability now becomes more
difficult. Our current implementation uses a simple brute force approach, namely
an exhaustive search over Ω combined with a numerical procedure to optimize
the spread θ (given a center ranking π). This approach works for label sets of
small to moderate size but becomes infeasible for larger number of labels. Yet, as
we are first of all interested in validating the approach from a conceptual point
of view, we leave the problem of a more efficient implementation for future work.
In this regard, we especially plan to use sophisticated sampling methods [11, 12].

5 Related Work

As mentioned previously, several approaches to label ranking have been proposed
in recent years. This section gives a brief review of these approaches that we shall
include in the empirical study in Section 6.

5.1 Ranking by Pairwise Comparison

The key idea of pairwise learning is well-known in the context of classification
[13], where it allows one to transform a polychotomous classification problem,
i.e., a problem involving m > 2 classes L = {λ1 . . . λm}, into a number of binary
problems. To this end, a separate model (base learner) Mi,j is trained for each



pair of labels (λi, λj) ∈ L×L, 1 ≤ i < j ≤ m; thus, a total number of m(m−1)/2
models is needed. Mi,j is intended to separate the objects with label λi from
those having label λj . At classification time, a query instance is submitted to all
models Mi,j , and their predictions are combined into an overall prediction. In
the simplest case, each prediction of a model Mi,j is interpreted as a vote for
either λi or λj , and the label with the highest number of votes is proposed as
the final prediction.

The above procedure can be extended to the case of preference learning
in a natural way [14, 15]. Again, a preference (order) information of the form
λa �x λb is turned into a training example (x, y) for the learner Mi,j , where
i = min(a, b) and j = max(a, b). Moreover, y = 1 if a < b and y = 0 otherwise.
Thus,Mi,j is intended to learn the mapping that outputs 1 if λi �x λj and 0 if
λj �x λi:

x 7→
{

1 if λi �x λj
0 if λj �x λi

. (10)

The model is trained with all examples xk for which either λi �xk
λj or λj �xk

λi is known. Examples for which nothing is known about the preference between
λi and λj are ignored.

The mapping (10) can be realized by any binary classifier. By using base
classifiers that map into the unit interval [0, 1], one obtains a valued preference
relation R(x) for every (query) instance x ∈ X:

R(x)(λi, λj) =
{

Mi,j(x) if i < j
1−Mj,i(x) if i > j

(11)

for all λi 6= λj ∈ L. This preference relation provides the point of departure
for deriving an associated ranking πx. A simple though effective strategy is a
generalization of the aforementioned voting strategy: Each alternative (label) λi
is evaluated by the sum of (weighted) votes

S(λi) =
∑
λj 6=λi

R(x)(λi, λj),

and all labels are then ordered according to these evaluations, i.e., such that

(λi �x λj)⇒ (S(λi) ≥ S(λj)).

5.2 Constraint Classification

Instead of comparing pairs of alternatives (labels), another natural way to repre-
sent preferences is to evaluate individual alternatives by means of a (real-valued)
utility function. Suppose to be given a utility function fi : X → R for each of
the labels λi, i = 1 . . .m. Here, fi(x) is the utility assigned to alternative λi by
instance x. To obtain a ranking for x, the labels can then be ordered according
to these utility scores, i.e., such that (λi �x λj)⇒ (fi(x) ≥ fj(x)).



A corresponding method for learning the functions fi(·), i = 1 . . .m, from
training data has been proposed in the framework of constraint classification [16,
4]. Proceeding from linear utility functions

fi(x) =
n∑
k=1

αikxk (12)

with label-specific coefficients αik, k = 1 . . . n, a preference λi �x λj translates
into the constraint fi(x) − fj(x) > 0 or, equivalently, fj(x) − fi(x) < 0. Both
constraints, the positive and the negative one, can be expressed in terms of the
sign of an inner product 〈z, α〉, where α = (α11 . . . α1n, α21 . . . αmn) is a con-
catenation of all label-specific coefficients. Correspondingly, the vector z is con-
structed by mapping the original `-dimensional training example x = (x1 . . . x`)
into an (m × `)-dimensional space: For the positive constraint, x is copied into
the components ((i− 1)× `+ 1) . . . (i× `) and its negation −x into the compo-
nents ((j − 1)× `+ 1) . . . (j × `); the remaining entries are filled with 0. For the
negative constraint, a vector is constructed with the same elements but reversed
signs. Both constraints can be considered as training examples for a conventional
binary classifier in an (m × `)-dimensional space: The first vector is a positive
and the second one a negative example. The corresponding learner tries to find
a separating hyperplane in this space, that is, a suitable vector α satisfying all
constraints. For classifying a new example e, the labels are ordered according to
the response resulting from multiplying e with the i-th `-element section of the
hyperplane vector.

Alternatively, [16, 4] propose an online version of constraint classification,
namely an iterative algorithm that maintains weight vectors α1 . . . αm ∈ R` for
each label individually. In every iteration, the algorithm checks each constraint
λi �x λj and, in case the associated inequality αi×x = fi(x) > fj(x) = αj ×x
is violated, adapts the weight vectors αi, αj appropriately. In particular, using
perceptron training, the algorithm can be implemented in terms of a multi-
output perceptron in a way quite similar to the approach of [17].

5.3 Log-Linear Models for Label Ranking

So-called log-linear models for label ranking have been proposed in [18]. Here,
utility functions are expressed in terms of linear combinations of a set of base
ranking functions:

fi(x) =
∑
j

αjhj(x, λi),

where a base function hj(·) maps instance/label pairs to real numbers. Interest-
ingly, for the special case in which instances are represented as feature vectors
x = (x1 . . . x`) and the base functions are of the form

hkj(x, λ) =
{
xk λ = λj
0 λ 6= λj

(1 ≤ k ≤ `, 1 ≤ j ≤ m), (13)



the approach is essentially equivalent to CC, as it amounts to learning class-
specific utility functions (12). Algorithmically, however, the underlying optimiza-
tion problem is approached in a different way, namely by means of a boosting-
based algorithm that seeks to minimize a (generalized) ranking error in an iter-
ative way.

5.4 Instance-Based Label Ranking

The idea of using an instance-based (case-based) approach to label ranking has
already been presented earlier in [19]. There, however, the estimation step is
realized by means of an ad-hoc aggregation procedure and not, as in this pa-
per, based on a sound probabilistic inference principle. Besides, the approach is
restricted to the case of complete preference information, which is why we did
not include it in the experimental study (and also refrain from a more detailed
discussion here).

6 Experimental Results

6.1 Methods

In this section, we compare our instance-based (nearest neighbor, NN) approach
to label ranking with ranking by pairwise comparison (RPC), constraint classi-
fication (CC), and log-linear models for label ranking (LL) as outlined, respec-
tively, in the previous section. CC is implemented in its online-variant using a
noise-tolerant perceptron algorithm as a base learner [20].1 To guarantee a fair
comparison, we use LL with (13) as base ranking functions, which means that
it is based on the same underlying model class as CC. Moreover, we implement
RPC with simple logistic regression as a base learner, which comes down to fit-
ting a linear model and using the logistic link function (logit(π) = log(π/(1−π)))
to derive [0, 1]-valued scores, the type of model output requested in RPC. For our
NN method, the parameter k (neighborhood size) was selected through cross-
validation on the training set. As a distance measure on the instance space we
used the Euclidean distance (after normalizing the attributes).

6.2 Data

We used two real-world data sets, dtt and spo, from the bioinformatics field.
These data sets contain two types of genetic data, namely phylogenetic pro-
files and DNA microarray expression data for the Yeast genome.2 The genome
consists of 2465 genes, and each gene is represented by an associated phyloge-
netic profile of length 24. Using these profiles as input features, we investigated
the task of predicting a “qualitative” representation of an expression profile:
1 This algorithm is based on the “alpha-trick”. We set the corresponding parameter
α to 500.

2 This data is publicly available at http://www1.cs.columbia.edu/compbio/exp-phylo



Table 1. Statistics for the semi-synthetic and real datasets

dataset #examples #classes #features

iris 150 3 4
wine 178 3 13
glass 214 6 9
vehicle 846 4 18
ddt 2465 4 24
cold 2465 4 24

Actually, the expression profile of a gene is an ordered sequence of real-valued
measurements, such as (2.1, 3.5, 0.7,−2.5), where each value represents the ex-
pression level of that gene measured at a particular point of time. A qualitative
representation can be obtained by converting the expression levels into ranks, i.e.,
ordering the time points (= labels) according to the associated expression values.
In the above example, the qualitative profile would be given by (2, 1, 3, 4), which
means that the highest expression was observed at time point 2, the second-
highest at time point 1, and so on. The use of qualitative profiles of that kind,
and a rank correlation measure as a similarity measure between them, was mo-
tivated in [21], both biologically and from a data analysis point of view.

In addition to the real-world data sets, the following multiclass datasets from
the UCI Repository of machine learning databases [22] and the Statlog collection
[23] were included in the experimental evaluation: iris, wine, glass, vehicle. For
each of these datasets, a corresponding ranking dataset was generated in the
following manner: We trained a naive Bayes classifier on the respective dataset.
Then, for each example, all the labels present in the dataset were ordered with
respect to decreasing predicted class probabilities (in the case of ties, labels with
lower index are ranked first). Thus, by substituting the single labels contained
in the original multiclass datasets with the complete rankings, we obtain the
label ranking datasets required for our experiments. The fundamental underlying
learning problem may also be viewed as learning a qualitative replication of the
probability estimates of a naive Bayes classifier. A summary of the data sets and
their properties is given in Table 1.

6.3 Experiments and Results

Results were derived in terms of the Kendall tau correlation coefficient from five
repetitions of a ten-fold cross-validation. To model incomplete preferences, we
modified the training data as follows: A biased coin was flipped for every label in
a ranking in order to decide whether to keep or delete that label; the probability
for a deletion is specified by a parameter p.

The results are summarized in Table 2 and furthermore presented graphically
in Fig. 1. As can be seen, NN is quite competitive to the model-based approaches
and sometimes even outperforms these methods. In any case, it is always close
to the best result. It is also remarkable that NN seems to be quite robust toward
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Fig. 1. Graphical illustration of the experimental results in terms of mean values.



Table 2. Experimental results in terms of Kendall’s tau (mean and standard deviation)
for different missing label rates (parameter p).

iris 0% 10% 20% 30% 40% 50% 60% 70%
RPC .885±.068 .888±.064 .886±.060 .871±.074 .854±.082 .837±.089 .779±.110 .674±.139
CC .836±.089 .825±.095 .815±.088 .807±.099 .788±.105 .766±.115 .743±.131 .708±.105
LL .818±.088 .811±.089 .805±.087 .806±.087 .800±.091 .788±.087 .778±.096 .739±.186
NN .883±.060 .884±.066 .865±.072 .859±.069 .840±.082 .839±.089 .773±.102 .740±.117
wine
RPC .921±.053 .900±.067 .886±.073 .902±.063 .910±.065 .882±.082 .864±.097 .822±.118
CC .933±.043 .918±.057 .929±.058 .911±.059 .922±.057 .885±.074 .853±.078 .802±.123
LL .942±.043 .944±.046 .939±.051 .944±.042 .933±.062 .918±.065 .906±.072 .864±.094
NN .937±.050 .935±.053 .927±.052 .922±.059 .914±.054 .897±.059 .878±.082 .759±.165
glass
RPC .882±.042 .875±.046 .867±.044 .851±.052 .840±.053 .813±.062 .799±.054 .754±.076
CC .846±.045 .848±.053 .838±.059 .835±.054 .833±.051 .807±.066 .789±.052 .747±.061
LL .817±.060 .815±.061 .813±.063 .819±.062 .819±.060 .809±.066 .806±.065 .807±.063
NN .846±.072 .845±.071 .837±.070 .824±.062 .798±.068 .762±.084 .702±.072 .624±.069
vehicle
RPC .854±.025 .848±.025 .847±.024 .834±.026 .823±.032 .803±.033 .786±.036 .752±.041
CC .855±.022 .848±.026 .849±.026 .839±.025 .834±.026 .827±.026 .810±.026 .791±.030
LL .770±.037 .769±.035 .769±.033 .766±.040 .770±.038 .764±.031 .757±.038 .756±.036
NN .863±.029 .859±.031 .857±.028 .845±.026 .829±.033 .808±.029 .789±.032 .749±.040
dtt
RPC .174±.034 .172±.034 .168±.036 .166±.036 .164±.034 .153±.035 .144±.028 .125±.030
CC .180±.037 .178±.034 .176±.033 .172±.032 .165±.033 .158±.033 .149±.031 .136±.033
LL .167±.034 .168±.033 .168±.034 .168±.034 .167±.033 .167±.036 .162±.032 .156±.034
NN .181±.033 .180±.031 .178±.034 .172±.034 .163±.034 .163±.038 .159±.037 .141±.033
cold
RPC .221±.028 .217±.028 .213±.030 .212±.030 .208±.030 .201±.030 .188±.030 .174±.031
CC .220±.029 .219±.030 .212±.030 .212±.028 .205±.024 .197±.030 .185±.031 .162±.035
LL .209±.028 .210±.031 .206±.030 .210±.030 .203±.031 .203±.031 .202±.032 .192±.031
NN .234±.025 .229±.028 .223±.027 .213±.027 .213±.027 .208±.029 .197±.024 .185±.027

missing preferences and compares comparably well in this regard. This was not
necessarily expected, since NN uses only local information, in contrast to the
other approaches that induce global models.

As a nice feature of our approach, let us mention that it comes with a natural
measure of the reliability of a prediction. In fact, the smaller the parameter θ, the
more peaked the distribution around the center ranking and, therefore, the more
reliable this ranking becomes as a prediction. To test whether (the estimation of)
θ is indeed a good measure of uncertainty of a prediction, we used it to compute a
kind of accuracy-rejection curve: By averaging over five 10-fold cross validations,
we computed an accuracy degree τx (the average Kendall-tau) and a reliability
degree θx for each instance x. The instances are then sorted in decreasing order
of reliability. Our curve plots a value p against the mean τ -value of the first p
percent of the instances. Given that θ is indeed a good indicator of reliability,
this curve should be decreasing, because the higher p, the more instances with
a less strong θ-value are taken into consideration. As can be seen in Fig. 2, the
curves obtained for our data sets are indeed decreasing and thus provide evidence
for our claim that θ may serve as a reasonable indicator of the reliability of a
prediction.
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Fig. 2. Accuracy-rejection curves computed on the basis of the parameter θ.

7 Conclusions and Future Work

In this paper, we have introduced an instance-based (nearest neighbor) approach
to the label ranking problem that has recently attracted attention in the field of
machine learning. Our basic inference principle is a consistent extension of the
nearest neighbor estimation principle, as used previously for well-known learn-
ing problems such as classification and regression: Assuming that the conditional
(probability) distribution of the output given the query is locally constant, we
derive a maximum likelihood estimation based on the Mallows model, a spe-
cial type of probability model for rankings. Our first empirical results are quite
promising and suggest that this approach is competitive to (model-based) state-
of-the-art methods for label ranking.

Currently, we are working on a more efficient implementation of the estima-
tion step in the case of incomplete preference information. In this case, there
is no analytical solution for the MLE problem and, as mentioned previously, a
naive implementation (exhaustive search) becomes too expensive. In particular,
we plan to use efficient sampling methods to overcome this problem. Besides,
we are looking at extensions and variants of the label ranking problem, such a
calibrated label ranking and multi-label classification [24, 25].
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8. Hüllermeier, E., Fürnkranz, J.: Ranking by pairwise comparison: A note on risk
minimization. In: IEEE International Conference on Fuzzy Systems. (2004)

9. Mallows, C.: Non-null ranking models. In: Biometrika. Volume 44., Biometrika
Trust (1957) 114–130

10. Fligner, M., Verducci, J.: Distance based ranking models. In: Royal Statistical
Society. Volume 48. (1986) 359–369

11. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. In:
The American Statistician. Volume 49., American Statistical Association (1995)
327–335

12. Diaconis, P., Saloff-Coste, L.: What do we know about the metropolis algorithm?
In: Journal of Computer and System Sciences. Volume 57. (1998) 20–36

13. Fürnkranz, J.: Round robin classification. Journal of Machine Learning Research
2 (2002) 721–747
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24. Brinker, K., Fürnkranz, J., Hüllermeier, E.: A unified model for multilabel classi-

fication and ranking. In: Proceedings ECAI–2006, 17th European Conference on
Artificial Intelligence, Riva del Garda, Italy (2006) 489–493
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