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Abstract. In multi-criteria decision making (MCDM) and fuzzy model-
ing, preference models are typically constructed by interacting with the
human decision maker (DM). When the DM experiences difficulties to
specify precise for all parameters of the model, inference and elicitation
procedures can assist him/her to find a satisfactory model and to as-
sess unlabelled examples. In a related but more statistical way, machine
learning algorithms can also infer preference models with similar setups
and purposes, but here less interaction with the DM is integrated. We
present a hybrid approach that combines the best of both worlds. It con-
sists of a general kernel-based framework for constructing and inferring
preference models, in which expert knowledge can be included. Additive
models, for which interpretability is preserved, and utility models can
be considered as special cases. Besides generality, important benefits of
this approach are its robustness to noise and good scalability. We show
in detail how this framework can be utilized to aggregate single-criterion
outranking relations, resulting in a flexible class of preference models for
which domain knowledge can be specified by a DM.

1 Introduction

In many situations humans compare items or objects in order to select an appro-
priate one for a specific goal. Think for example of buying clothes, listening to
music, the dish one orders in a restaurant, etc. Continually, we evaluate objects
on criteria such as appropriateness, beauty, correctness, etc. As a consequence of
the growing amount of human preference information that comes available due
to the fast rise of information retrieval, e-commerce and other internet-related
applications, the demand for intelligent systems capable of representing and pro-
cessing this information also increases. In research areas like decision making,
preference modelling, fuzzy modelling, statistics and machine learning, scientists
have proposed various ways to characterize such systems. In decision making and
(fuzzy) preference modelling, preferences are typically modelled in a logical way,
which gives the DM insights into the model and allows for the incorporation
of domain knowledge into the model by interacting with the DM and the data



analyst. One distinguishes input-oriented preference information (such as the rel-
ative importance of features or known values for certain parameters of the model)
and result-oriented preference information (which typically consists of preference
assignments by the DM for a small subset of the data, i.e. labelled training data).
The machine learning community on the other hand has mainly focussed on pro-
cessing these labelled training samples, and learning-based preference models are
rather constructed in a statistical than a logical way, in which the uncertainty of
preferences is expressed in terms of probabilities and errors instead of member-
ship degrees or degrees of relationship. Settings like ordinal regression, ranking
learning and preference learning can also capture human preference behavior,
but in general less domain knowledge in terms of input-oriented information is
integrated. These methods can be seen as a tool to extract and represent prefer-
ence information automatically [Boutilier et al., 2004, Doyle, 2004, Jung et al.,
2005]. In recent years, the decision making community has realized the need for
automatic systems to support the decision making process. Inference and elicita-
tion procedures are becoming more and more popular in this community as well,
but the setup is usually slightly different. During elicitation, the DM interacts
with the system and he/she can change his/her opinion about certain data ob-
jects to which labels were assigned. Moreover, he/she can partially understand
the models and is able to specify values for some of the parameters. On the other
hand, most elicitation procedures can only handle consistent data, i.e. noise-free
data is required, and the methods usually scale badly in the number of training
instances.

With this article we want to combine the best of both worlds and illustrate
that these two fields have much more in common than one would expect at
first sight. In particular, we will promote MCDM methods as a tool to elicit
preference information from the DM that can be integrated into kernel-based
machine learning algorithms. In this way, we are able to include expert knowl-
edge into the algorithms as a kind of preprocessing step. From an MCDM point
of view, this corresponds to a new way of aggregating preference relations ex-
pressed on individual features. The article is organized as follows. In Section 2 we
briefly discuss the various ways of modelling preferences in machine learning and
MCDM, and we pay specific attention to the aspect of inferring the parameters
of the resulting models. Subsequently, in Section 3 we first give an introduction
to kernel-based preference learning, followed by our framework which can be
seen as a generalization of the existing approach. We show how single-criterion
outranking relations can be aggregated with kernels and be embedded into this
framework. At the end, we give a small example to illustrate some ideas and we
formulate a conclusion.

2 Preference elicitation versus preference learning

Let us consider a (possibly infinite) set of data objects X . We will assume that
each data object x ∈ X is represented by its scores on m features, which will
be denoted x = (x(1), ..., x(m)), so X ≡ Rm We remark that in MCDM data



objects and features are respectively called alternatives and criteria, but here
we will mainly employ a machine learning terminology. Using these notations,
one can distinguish two main types of models in decision making for modelling
preferences [Özturk et al., 2003]. On the one hand, we have ranking or utility
models, which typically construct a continuous function of the form f : X → R
such that:

x1 � x2 ⇔ f(x1) ≥ f(x2) .

This means that data object x1 is preferred to data object x2 if the highest
value was assigned to x1. The ranking or utility approach has been especially
popular in machine learning for scalability reasons. On the other hand, we have
pairwise preference models in which the preferences are modelled by one (or
more) relations R : X 2 → [0, 1] that express whether x1 should be preferred
over x2. One can distinguish different kinds of relations such as crisp relations,
fuzzy relations or reciprocal relations. Pairwise preference models allow a flexible
and interpretable description of preferences and have therefore been popular
in MCDM and the fuzzy set community. In this article we will mainly focus
on these models, since ranking models can be reduced to pairwise preference
models (under certain conditions). A pairwise preference model can for example
be generated with reciprocal relations, i.e. relations Q : X 2 → [0, 1] satisfying

Q(x1,x2) +Q(x2,x1) = 1 , ∀x1,x2 ∈ X .

The semantics underlying reciprocal preference relations is often probabilistic:
Q(x1,x2) expresses the probability that object x1 is preferred to x2. One can
in general construct such a reciprocal or probabilistic preference relation from a
ranking model in the following way:

Q(x1,x2) = g(f(x1), f(x2)) , (1)

with g : R2 → [0, 1] usually increasing in its first argument and decreasing in its
second argument [Switalski, 2003]. Examples of reciprocal preference models are
Bradley-Terry models [Bradley and Terry, 1952, Agresti, 2002] and Thurstone-
Case5 models [Thurstone, 1927]. They have been applied in a machine learning
learning context in [Chu and Ghahramani, 2005, Herbrich et al., 2007, Radlinski
and Joachims, 2007]

Another interesting type of [0, 1]-valued preference relations are outrank-
ing relations [Perny, 1992]. They can for example be found in ELECTRE and
PROMETHEE methods [Roy, 1991, Vincke, 1992, Bouyssou et al., 2006] and
they have a different semantics than reciprocal relations: outranking relations are
fuzzy preference relations, in the sense that they can be interpreted as graded
versions of the relation �. Global outranking relations S : Rm×Rm → [0, 1] are
typically constructed by taking a weighted sum of single-criterion outranking
relations sk : R× R→ [0, 1]:

S(x1,x2) =
m∑
k=1

wksk(x(k)
1 , x

(k)
2 ) . (2)



See for example [Gheorghe et al., 2004, 2005] for a detailed discussion on that
topic. Analogously, one can fuzzify the strict preference relation P , indifference
relation I and incomparability relation J , leading to the concept of a (fuzzy)
preference structure [De Baets et al., 1995]. Such a triplet of [0, 1]-valued relations
can be generated from an outranking relation and an indifference generator [Van
De Walle et al., 1998, De Baets and Fodor, 2003]. When no incomparability is
assumed, a close relationship exists between outranking relations and reciprocal
relations, although they express different concepts [De Baets and De Meyer,
2005].

In decision making one often assumes that the parameters of preference mod-
els are found by interacting with the DM, which can be a hard task. Many
models contain a lot of parameters, especially when the number of criteria is
rather large, and in such cases the DM often has difficulties in specifying pre-
cise values for many of the parameters. Then, inference procedures are used to
infer the unknown parameters of the model from holistic judgements given by
the DM. In these approaches, the information obtained from the DM can be
divided into input-oriented and result-oriented information. The input-oriented
information includes all domain knowledge to construct the model, such as the
relative importance of criteria or the values of some of the parameters of the
model. On the other hand, the result-oriented information consists of preference
judgements expressed by the DM for a small subset of the alternatives. The re-
maining parameters are then inferred with the help of an optimization algorithm
[Mousseau, 2005, Greco et al., 2008].

We will use the symbol Y to denote the set of judgements the DM can
give and D to denote the collection of result-oriented information, which can be
subdivided into ordinal class assignments and pairwise preference judgments. We
will only consider the latter type of result-oriented information because under
certain restrictions ordinal class assignments can be transformed to pairwise
preference judgments. In this case, the DM gives crisp preference judgements
about pairs of alternatives, leading to three possible choices, i.e. Y = {+1, 0,−1},
in which +1 denotes that the first alternative is preferred to the second one, −1
denotes the opposite and 0 denotes indifference:

yij = +1 ⇔ xi � xj ,

yij = 0 ⇔ xi ∼ xj ,

yij = −1 ⇔ xi ≺ xj .

We will denote yij the label of the couple (xi,xj). So, the data set D ⊆ X 2 ×Y
contains couples of alternatives together with their labels: ((xi,xj), yij).

Inference from holistic judgements has for example been investigated by
Mousseau and Slowinski [1998], Mousseau et al. [2001], Dias and Mousseau [2006]
in the context of ELECTRE methods, by Fan et al. [2002], Wang and Parkan
[2005] for reciprocal preference relations and by Kojadinovic [2004], Marichal
et al. [2005], Grabisch et al. [2008] for Choquet integrals. These authors in general
use mathematical programming techniques like linear or quadratic programs to
infer the parameters of the respective models. The holistic judgements specified



by the DM impose constraints on the parameters of the model, while the objec-
tive function to be minimized represents an error function. In machine learning,
similar techniques are used to achieve the same goals, but the general assump-
tions and the mathematical representation of preferences differ. This subfield
covers the ordinal regression, ranking and preference learning settings, which
substantially differ from standard classification and (metric) regression learning.
Ranking and ordinal regression both refer to learning utility functions, in which
the result-oriented information takes the form of ordinal class assignments. In
the former case, one is only interested in imposing a complete order on X given
the result-oriented information, similar to ranking in MCDM. In the latter case,
all elements of X have to be classified into one of the r ordinal classes. This
corresponds to sorting in MCDM. Ordinal regression can be realized from the
utility function, either directly from inference or by applying post-processing
techniques such as ROC analysis [Waegeman et al., 2008a,b]. Ordinal regression
differs from multi-class (nominal) classification because there is a linear order
relation defined on Y. Thirdly, preference learning usually refers to the situa-
tion where the DM has given pairwise preference judgements instead of ordinal
class assignments [Fürnkranz and Hüllermeier, 2003] and in machine learning
it has been considerably less studied than ranking and ordinal regression. Here
the parameters of a reciprocal preference relation Q are inferred. A close rela-
tionship with ranking and ordinal regression models is also retained due to the
transitivity of Q.

While MCDM has primarily concentrated on preference modelling for tradi-
tional decision making problems, applications of preference learning are rather
found in more fancy domains with different characteristics (less domain knowl-
edge, less interaction, more noise, higher-dimensional data, etc.). Nevertheless,
the idea of inferring the parameters of a preference model from holistic judge-
ments remains a common goal and a cross-fertilization between both fields could
be meaningful. In the next section we present a method that has a flavor of
both fields, namely the robustness to noise, scalability and generality of machine
learning methods and the adequate way of including domain knowledge from
MCDM.

3 Kernel methods for preference modelling

During the last decade, a lot of interesting papers on ordinal regression, ranking
and preference learning have appeared, see e.g. [Herbrich et al., 2000, Freund
et al., 2003, Crammer and Singer, 2001, Shashua and Levin, 2003, Rennie and
Srebro, 2005, Chu and Keerthi, 2005]. Many of these authors use kernel meth-
ods to design learning algorithms. The majority of them also considers ranking
approaches to represent the preferences. We first briefly explain the ordinal re-
gression approach introduced by Herbrich et al. [2000] to model preferences,
followed by our own approach based on pairwise preference models, which can
be seen as a generalization of the ranking approach. In the last subsections we



demonstrate how this method could be useful to aggregate single-criterion pref-
erence relations and we give an example.

3.1 Ranking models

In the context of kernel-based ordinal regression or ranking, we consider ranking
functions f : X → R of the following general form:

f(x) = w · φ(x) , (3)

with φ a possibly infinite-dimensional and in general unknown feature mapping.
Given a dataset

D = {((xi,xj), yij) | i, j ∈ N∗,xi,xj ∈ X} ,
consisting of pairwise preference assignments given by a DM, the parameters w
are inferred by solving a quadratic program defined as follows:

min
w,ξij

1
2
||w||2 + C

∑
i,j:yij=1

ξij

subject to
{
∀i, j : yij = 1 : w · (φ(xi)− φ(xj)) ≥ 1− ξij
ξij ≥ 0 .

Similar to other kernel-based learning algorithms like support vector machines
[Cristianini and Shawe-Taylor, 2000], the function to be optimized puts together
two objectives in a weighted sum with C a trade-off parameter. The first ob-
jective is the standard regularization criterion used in kernel methods. Such a
regularizer can be interpreted as a functional representing the complexity of the
ranking function in Eq. (3). In the dual formulation this regularizer is rewritten
in terms of kernels and must be interpreted as the norm of f in the feature
space H. The second objective reflects an error function defined on the differ-
ence between the holistic judgements and the output of the model. To this end,
a slack variable ξij is introduced for each pair of better/worse objects. We are
thus looking for a utility model of type Eq. (3) that preserves the preferences
given by the DM as good as possible, while simultaneously the complexity of the
model is bounded.

In the dual formulation, the feature mappings in the optimization problem
can be expressed in terms of kernels:

max
αij

∑
i,j:yij=1

αij −
1
2

∑
i,j:yij=1

∑
k,l:ykl=1

αijαkl(K(xi,xk)−K(xi,xl)−K(xj ,xk)

+K(xj ,xl)) ,

subject to 0 ≤ αij ≤ C, ∀i, j : yij = 1 .
and the model becomes

f(x) =
∑

i,j:yij=1

αij(K(x,xi)−K(x,xj)) . (4)

Given such a ranking model, a reciprocal preference relation can be constructed
in several ways. In general it will take the form of Eq. (1).



3.2 Construction of a pure pairwise preference model

In this section we will present a generalization of the above approach. Let us
now consider δf : X 2 → R expressing the preference of the object x compared
to the object x′:

δf(x,x′) = w · δφ(x,x′) .

For such a relation, we can draw up a similar type of optimization problem,
namely

min
w,ξij

1
2
||w||2 + C

∑
i,j:yij=1

ξij (5)

subject to
{
∀i, j : yij = 1 : w · δφ(xi,xj) ≥ 1− ξij
ξij ≥ 0 .

With duality theory, the entire setup is reformulated in terms of kernels. Follow-
ing from the Karush-Kuhn-Tucker conditions, we get a similar dual optimization
problem:

max
αij

∑
i,j:yij=1

αij −
1
2

∑
i,j:yij=1

∑
k,l:ykl=1

αijαklK
∗(xi,xj ,xk,xl)

subject to 0 ≤ αij ≤ C, ∀i, j : yij = 1 ,

in which the kernel now represents a dot-product on couples of alternatives in
an unknown feature space H:

K∗(xi,xj ,xk,xl) = δφ(xi,xj) · δφ(xk,xl) .

The solution of optimization problem (5) can be written as:

δf(x,x′) =
∑

i,j:yij=1

αijK
∗(xi,xj ,x,x′) , (6)

and regularization now takes the following form:

||w||2 =
∑

i,j:yij=1

∑
k,l:ykl=1

αijαklK(xi,xj ,xk,xl) . (7)

Remark that the ranking approach can be seen as a special case, by defining the
kernel function K∗ as

K∗(xi,xj ,xk,xl) = K(xi,xk)−K(xi,xl)−K(xj ,xk) +K(xj ,xl) ,

of the original two-dimensional kernel function used in the utility model in
Eq. (4).



3.3 Aggregating single-criterion outranking relations with kernels

The framework presented in the previous subsection is to our opinion very gen-
eral. By picking a specific kernel function, the data analyst can choose the desired
model complexity. With a linear kernel one obtains an additive model, with a
polynomial kernel interactions between criteria are considered and with an RBF
kernel one arrives at a full black-box representation of the data, useful for very
complex domains. Moreover, this framework includes utility models as a spe-
cial case. In this subsection we demonstrate how common MCDM models can
be embedded into it. We will give the example of concordance relations. Simi-
lar techniques can be used to kernelize Choquet integrals for example, but that
discussion would deserve an article on its own.

In particular, kernel methods can be seen as a tool for aggregating single-
criterion preference relations. We will give the example of valued concordance
relations, which are in ELECTRE methods constructed from single-criterion out-
ranking relations. Following the notation adopted in this paper, we can represent
such a single-criterion outranking relation as follows:

sk(x(k)
i , x

(k)
j ) =

pk(x(k)
i )−min{x(k)

j − x
(k)
i , pk(x(k)

i )}

pk(x(k)
i )−min{x(k)

j − x
(k)
i , qk(x(k)

i )}
,

with pk and qk threshold functions. A concordance relation is built from these
single-criterion outranking relations as a weighted sum:

S(xi,xj)=
m∑
k=1

wksk(x(k)
i , x

(k)
j ) = w · s(xi,xj) ,

in which we used a shorthand (vector) notation in the last line. The main idea
simply consists of embedding this vector s of single-criterion preferences in fea-
ture space:

δf(xi,xj) = w · δφ(xi,xj) = w · φ(s(xi,xj)) . (8)

Remark that φ still represents the mapping of an m-dimensional real vector (in
this case s) to a feature space of higher dimension, while δφ transforms couples
of alternatives to feature space. The construction of the vector of single-criterion
outranking relations from xi and xj can thus be interpreted as a preprocessing
step, preparatory to learning or inference. In this way domain knowledge is
taken into account when the DM determines the values of the single-criterion
outranking relations, apart from the inference procedure.

In the dual representation, the above model can be rewritten in the general
form of Eq. (6) with the kernel function K∗ now defined by:

K∗(xi,xj ,xk,xl) = K(s(xi,xj), s(xk,xl)) , (9)

and K : X 2 → R a regular kernel function. The choice of K will now determine
whether single-criterion outranking relations are aggregated in an additive or



more complex way and, when interactions are considered, one can easily specify
how many criteria simultaneously interact by specifying the degree of a polyno-
mial kernel. Alternatively, the degree of such a kernel can be also inferred with
resampling techniques.

With a further restriction to linear kernels and a normalization, one recovers
the concordance relation as briefly summarized in the following proposition that
directly follows from the definitions.

Proposition 1. Let K : X 2 → R be a positive definite kernel with feature map-
ping φ : Rm → Rm∗

, let φk be the k-th component of φ with k ∈ {1, ...,m∗}, let
δf and K∗ be respectively defined by Eq. (6) and (9) and let

m∗∑
k=1

∑
i,j:yij=1

αijφk(s(xi,xj)) = 1 , (10)

then δf is an outranking relation.

Eq. (10) is the equivalent representation of the normalization of w. Such a nor-
malization in terms of the L1-norm can only be expressed in the primal repre-
sentation, using δφ instead of K∗, contrary to the L2-norm of w which is given
in kernel form by substituting Eq. (9) into Eq. (7).

This limitation of the L1-norm might impose a serious bottleneck on the
scalability of our algorithm if δf has to be an outranking relation. Yet, the
grounds for avoiding a normalization of the weights are much more fundamental
and go back to the need for regularization. From a machine learning perspective,
such a normalization (which fixes the complexity of the model) will lead to
overfitting. Definitely, the lack of regularization is an undeniable shortcoming of
existing inference procedures in MCDM.

Knowing that a normalization is better avoided, we do not promote the
approach presented here as a tool to construct outranking relations. We rather
want to illustrate how preferences relations defined on individual criteria can
be aggregated with kernels, leading to a flexible class of models that can be
efficiently and robustly inferred based on holistic judgements.

3.4 Example

The embedding of single-criterion preference into kernel space is straightforward
and can be efficiently implemented in a standard SVM, a Ranking SVM and
other kernel-based methods by constructing a set of positive and negative exam-
ples from the single-criterion preference relations. Unfortunately, we could not
find any publicly available data sets that satisfied our needs to demonstrate the
potential benefits of our approach. In the MCDM domain it is not common to
report experimental results on statistically relevant samples, simply because typ-
ical applications give rise to very small data sets on which a statistical method
would fail to produce meaningful results. To the best of our knowledge, no data
sets of reasonable size exist, containing both preference evaluations for individual
criteria and holistic judgments.



Alternatively, we will briefly discuss an example adopted from Gheorghe
et al. [2004]. In that paper an artificial data sample of three data objects is
considered. Each of the data objects is evaluated on three criteria. The actual
values obtained for these criteria do not matter, since we will only need the
single-criterion preference relations constructed from them. In the example strict
preference relations are considered instead of concordance relations. Similarly,
we will employ the notation pk(x(k)

i , x
(k)
j ) for such a single-criterion preference

relation. The following [0, 1]-valued strict preference relations were generated for
each of the three criteria:

pk(x(1)
i , x

(1)
j ) x(1)

1 x
(1)
2 x

(1)
3

x
(1)
1 0 1 0.599
x

(1)
2 0 0 0
x

(1)
3 0 1 0

pk(x(2)
i , x

(2)
j ) x(2)

1 x
(2)
2 x

(2)
3

x
(2)
1 0 1 0.49
x

(2)
2 0 0 0
x

(2)
3 0.056 0.956 0
pk(x(3)

i , x
(3)
j ) x(3)

1 x
(3)
2 x

(3)
3

x
(3)
1 0 0 0
x

(3)
2 1 0 0.956
x

(3)
3 1 0 0

This information is generated in a preprocessing step by interacting with the DM.
We assume in addition that the DM has given the following pairwise judgments:

y12 = +1 , y13 = +1 , y23 = −1 ,

so transitivity is preserved and we obtain the ranking x1 � x3 � x2. This ranking
is consistent with the first two criteria and inconsistent with the third one.
However, if we allow that criteria can have a negative impact on the preference,
then the holistic judgments are also consistent with the third criterion. Remark
that the models discussed above allow negative impacts of criteria. In fact, it is
supposed that the direction of the impact of a criterion will be inferred as well.
If this direction is known beforehand, then one could add a constraint to the
optimization problem.

In order to apply the method described above, we transform the available
data to a standard classification data set as follows:

pk(x(1)
i , x

(1)
j ) pk(x(2)

i , x
(2)
j ) pk(x(3)

i , x
(3)
j ) yij

1 1 1 0 +1
2 0.599 0.49 0 +1
3 0 0 0.956 -1
4 0 0 1 -1
5 0 0.056 1 -1
6 1 0.956 0 +1



Subsequently, we train a support vector machine on this data set and obtain the
following output values for C = 1 and a linear kernel:

δf(xi,xj) x1 x2 x3

x1 / -1.000 -0.713
x2 1.020 / 0.995
x3 1.000 -1.001 /

From this output, a reciprocal preference relation can be constructed in a post-
processing step. In this case, we applied the method of [Wu et al., 2004] that
utilizes Eq. (1):

Q(xi,xj) x1 x2 x3

x1 / 0.840 0.770
x2 0.202 / 0.208
x3 0.207 0.837 /

We emphasize that the obtained probabilistic measure of preference is not well
calibrated here, because this example is far too small to draw conclusions in
a statistical way. Nevertheless, the probabilities still match very well with the
preference assignments given by the DM, because they are consistent with the
ranking x1 � x3 � x2.

4 Conclusion

In this article we presented a first attempt to bridge the gap between machine
learning and MCDM in modelling human preference behavior. To this end, we
generalized an existing kernel-based framework for preference learning such that
expert knowledge can be integrated. This approach can be interpreted as a kind
of preprocessing step in which preference relations defined on individual features
are specified by the DM. Following on that, kernel method are employed to
aggregate these single-criterion preference relations in a single preference model.
In general, additive models are generated by a linear kernel, while more complex
models are characterized by other types of kernels. We demonstrated that with
polynomial kernels it is possible to represent interactions between criteria, in
a very similar way as Choquet integrals for example. Due to a lack of usable
data sets in this domain, we could not demonstrate the practical usefulness of
our approach empirically. In the future we intend to set up some experiments to
generate such data ourselves.
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