
Learning preference relations over combinatorial
domains

Jérôme Lang and Jérôme Mengin ?

Institut de Recherche en Informatique de Toulouse
31062 Toulouse Cedex, France

Abstract. We address the problem of learning preference relations over multi-
attribute (or combinatorial) domains. We do so by making hypotheses about the
dependence structure between attributes that the preference relation enjoys. The
first hypothesis we consider is the simplest one, namely, separability (no depen-
dences between attributes: the preference over the values of each attribute is inde-
pendent of the values of other attributes); then we consider the more general case
where the dependence structure takes the form of an acyclic graph. In all cases,
what we want to learn is a set of local preference relations (or equivalently, a CP-
net) rather than a fully specified preference relation. We consider three forms of
consistency between a CP-net and a set of examples, and for two of them we give
an exact characterization in the case of separability, as well as complexity results.

1 Introduction

In many applications, especially electronic commerce, it is important to learn the pref-
erences of the user on a set of alternatives. Often, the set of alternatives has a combina-
torial (or multiattribute) structure, that is, each alternative is a tuple of values for each
of a given number of variables (or attributes). For instance, suppose we want to build
a recommender system for movies. The available data are the preferences the user has
expressed on the movies she has seen, and we would like to predict her preferences on
movies she hasn’t seen yet [1, 2]. The most obvious way of doing this is to describe
movies using various attributes, such as genre, year, film maker etc. As another exam-
ple [3, 4], one may want to build a system helping a user finding a flat from a large
database. A flat is described by attributes such as price, location, size etc. and from the
past interactions with the user, the system has to find out what her preferences are so
that it can help us finding her ideal flat while minimizing the number of interactions.

There is an important difference between these two examples. The latter is an in-
stance of what is usually called preference elicitation: the system interacts with the user
by asking her specific requests, until she has found her target object or left the system
[5]. The former is an instance of passive learning: the system has in input the whole set
of preferences over films (which has been obtained independently) and has to suggest
one (or several) new object(s), without any further interaction.

? Acknowledgements: many thanks to Richard Booth, Kevin Garcia, Peter Haddawy, Mathieu
Serrurier and Chattrakul Sombatheera for lots of helpful discussions on this topic. Anonymous
referees also gave helpful comments.

In both cases, however, the system has to learn preferences of a user (or, sometimes,
a class of users) over a set of alternatives that possesses a combinatorial structure. Pref-
erences over combinatorial domains have been investigated in detail by researchers in
multiattribute decision theory (starting with [6]) and in artificial intelligence. Multiat-
tribute decision theory has focused on modelling preferences, that is, giving axiomatic
characterizations of classes of preference relations or utility functions, while artificial
intelligence has focused on designing languages for representing preferences that are
computationally efficient (they have to express these preferences as succinctly as pos-
sible, and to come with algorithms for finding optimal alternatives that are as fast as
possible).

Classes of models and languages can be partitioned first according to the mathe-
matical nature of the preferences they consider. Roughly speaking, one distinguishes
between ordinal preferences (consisting in ranking the alternatives), and numerical
preferences (consisting of utility functions mapping each alternative to some number).
Here we focus on ordinal preferences. They have the advantage of often being easier to
obtain from users (as it is well-known that users are ill at ease giving numerical values,
except when these values are prices).

A key point, when dealing with ordinal preferences on combinatorial domains, is
the dependence structure between attributes. CP-nets [7] are a graphical language for
representing preferences that is based on conditional preferential independence [6]. A
CP-net is composed of a directed graph representing the preferential dependences be-
tween variables, and a set of conditional tables (one for each variable), expressing, for
each variable, the local preference on the values of its domain given the possible com-
bination of values of its parents. The transitive closure of these local preferences is a
partial order over the set of alternatives, which can be extended into several total orders.
This is one of the most popular preference representation languages, and many facets of
CP-nets have been studied, such as consistency, dominance checking, and optimization
(constrained and unconstrained). One missing brick is the learning of CP-nets from a
user.

Whereas learning or eliciting numerical preferences over multiattribute domains has
been considered in some places (e.g. [8] , [9]), as far as we know learning CP-nets has
been considered only by [10]; however, their approach suffers from an important draw-
back: it searches for a CP-net, whose associated partial order contains all the examples
– we say that it entails the examples, – while we argue that what we intuitively look for
is a CP-net whose associated partial order can be extended into at least one total order
that contains the examples – we then say that the CP-net is consistent with them. To see
this, consider the following example.

Example 1. Suppose we have two binary attributes X1 and X2 (with domains {x1, x1}
and {x2, x2} respectively), and the set of examples E = {x1x2 � x1x2, x1x2 �
x1x2, x1x2 � x1x2}. The transitive closure of E is the complete preference relation
x1x2 � x1x2 � x1x2 � x1x2. This preference relation is separable, which means that
the agent’s preferences over the values of one attribute do not depend on the value of
the other attributes: here, the agent unconditionally prefers x1 to x1 and x2 to x2. The
fact that x1x2 is preferred to x1x2 simply means that when asked to choose between

X1 and X2, the agent prefers to give up X2 (think of X1 meaning “getting rich” and
X2 meaning “beautiful weather tomorrow”).

What do we expect to learn from the above set of examples E? Intuitively, since
E is a separable preference relation, we expect to output a CP-net N with an empty
graph and the two unconditional preference tables x1 � x1 and x2 � x2. However,
no CP-net implies E , whatever its dependence graph. The CP-net N induces a partial
preference relation in which x1x2 and x1x2 are incomparable; and more generally,
no CP-net can “explain” that x1 � x1 is “directly preferred” to x2 � x2 (i.e., with
no intermediate alternative). Therefore, if we look for a CP-net implying each of the
examples, we will simply output ‘failure”. On the other hand, if we look for a CP-net
that is simply consistent with the examples we will output the above CP-net.

The explanation is that when an agent expresses a CP-net, the preference relation
induced by this CP-net is not meant to be the whole agent’s preference relation, but a
subset (or a lower approximation) of it. In other terms, when an agent expresses the
CP-net N , she simply expresses that she prefers x1 to x1 ceteris paribus (i.e., for a
fixed value of X2) and similarly for the preference x2 � x1; the fact that x1x2 and
x1x2 are incomparable inN surely does not mean that the user really sees them incom-
parable, but, more technically, that CP-nets are not expressive enough for representing
the missing preference x1x2 � x1x2

1.
Another way of explaining this difference is that there are two ways of seeing a

CP-net: either we identify it with its induced partial preference relation, or we identify
it with the set of all complete preference relations that extend this partial preference
relation. With the second view, the goal of the learning algorithm is to learn a collection
of tables such that the examples are consistent with some preference relation in this set.

In the next section, we give some background on preferences on combinatorial do-
mains, and then we introduce three kinds of compatibility between a CP-net and a set of
examples, namely, weak compatibility, strong compatibility and implicative compatibil-
ity. We then focus on the simplest case, namely separable preference relations (which
extend CP-nets with no preferential dependences): we show how weak compatibility
wan be reduced to a satisfiability problem and vice versa, which allows us to show
that deciding weak compatibility is NP-complete ; we also give a way of deciding im-
plicative consistency. We finally go further and show how to extend these results to the
situation where the graphical component of the CP-net is fixed but can contain depen-
dencies. In the last section, we conclude with some hints about the general case where
we have to learn both the graph and the tables.

2 The learning problem

2.1 Multiattribute domains

We assume that we have a finite set V = {X1, . . . , Xn} of attributes with associated
finite domains D1, . . . , Dn. D = D1× . . .×Dn is the set of all complete assignments,
called outcomes.

1 If we want to do this, we have to resort to a more expressive language such as TCP-nets [11]
or conditional preference theories [12].

For any nonempty subset X of V , we let DX = ×Xi∈XDi. Elements of DX are
called X -assignments (i.e. value assignments for all attributes in X); they are denoted
using vectorial notation, e.g., x. For any disjoint subsets X and Y of V , x ∈ DX and
y ∈ DY then the concatenation of x and y, xy, is formally defined as x∪ y – i.e., it is
the X ∪ Y -assignment which assigns to attributes in X (resp. Y) the value assigned by
x (resp. y).

An attribute Xi is binary if Di has two elements, which by convention we note xi
and xi.

A preference relation on a multiattribute domain D is a weak order on D, that is,
a reflexive and transitive binary relation �. If furthermore � is connected, that is, if
for every x,y ∈ D we have either x � y or y � x then � is a complete preference
relation. A strict preference relation � is an order on D, that is, an irreflexive and
transitive (thus asymmetric) binary relation. If moreover � is connected then � is a
linear preference relation. From a preference relation � we define a strict preference
relation in the usual way: x � y iff x � y and not (y � x).

Suppose now that we have a set of examples E , where each example is a pair of
distinct outcomes (x,y) (also denoted, equivalently, by x � y) such that x is preferred
to y. We sometimes denote such an example by x � y rather than (x,y). In the follow-
ing, E denotes a finite set of examples. In a recommender system for examples, these
example may have been recorded in the course of a user interaction with the system.

Ideally, we would like to induce from these examples the complete ordering of all
outcomes for the user. That is, we would like to learn how to order every unordered
pair of distinct outcomes {x,y}. Therefore, our target is a linear preference, or else, a
complete preference relation (if we allow for indifferences)

However, if we call O the set of total strict orders on D, and if the n attributes have
m possible values each, there are mn outcomes, thus mn! total strict orders inO. There
are too many elements in O to represent them efficiently, so we will have to restrict
ourselves to a smaller hypothesis space. In the next section, we briefly present CP-nets,
which will form our hypothesis space.

2.2 Ceteris paribus preferences and CP-nets

Preferences between outcomes that differ in the value of one attribute only, all other
attributes being equal (or ceteris paribus) are often easy to assert, and to understand.
CP-nets [7] are a graphical language for representing such preferences, that is based on
conditional preferential independence [6]. A CP-net is composed of a directed graph
representing the preferential dependences between attributes, and a set of conditional
preference tables (one for each attribute), expressing, for each attribute, the local prefer-
ence on the values of its domain given the possible combination of values of its parents.
This is one of the most popular preference representation languages on multiattribute
domains, and many facets of CP-nets have been studied, such as consistency, dominance
checking, and optimization (constrained and unconstrained).

Let us call a swap any pair of outcomes {x,y} that differ in the value of one attribute
only, and let us then call swapped attribute the attribute that has different values in x
and y. A CP-net specifies, for every swap {x,y}, which of x � y or y � x is true.

This can be achieved in a compact manner when there are many independences among
attributes.

Example 2. Consider three attributes A, B and C, with respective domains {a, a},
{b, b} and {c, c}, and suppose that the four swaps on B are ordered as follows: abc �
abc, abc � abc, abc � abc, abc � abc. We can see that, irrespective of the value ofC, if
a is the case, then b is preferred to b, whereas if a is the case, then b is preferred to b. We
can represent this ordering on the B-swaps with two conditional preferences: a : b � b
and a : b � b, and say that, given A, B is (conditionally) preferentially independant of
C.

Definition 1 Let {X ,Y,Z} be a partition of the set V and � a linear preference rela-
tion over D. X is (conditionally) preferentially independent of Y given Z (w.r.t. �) if
and only if for all x1,x2 ∈ DX , y1,y2 ∈ DY , z ∈ DZ ,

x1y1z � x2y1z iff x1y2z � x2y2z

Definition 2 A CP-net over attributes V = {X1, . . . , Xn} with domains D1, . . . , Dn

is a pair N = 〈G,P 〉 where G is a directed graph over x1, . . . , xn and P is a set
of conditional preference tables CPT (Xi) for each Xi ∈ V . For attribute Xi, we
denote by Par(Xi) (resp. NonPar(Xi)) the set of parents ofXi inG (resp. V − ({Xi}∪
Par(Xi))). Each conditional preference table is a list of rows of the form u : xji � xki :
it associates a total order onDi with each instantiation u of Par(Xi), and indicates, for
every possible instantiation z of NonPar(Xi), that uxjiz � uxki z. When all attributes
of V are binary, a CP-net over V is said to be propositional.

Example 3. A CP-net over attributes A, B and C, with respective domains {a, a},
{b, b} and {c, c} is:

A

a � a

B

a : b � b
a : b � b

C

b : c � c
b : c � c

where X Y means “X is a parent of Y ”. The associated ordering of the
swaps is:

abc abc abc

abc

abc

abc abc abc

where x y means “x is preferred to y”.

Although a CP-net only specifies an ordering of all swaps, we are naturally in-
terested in the transitive closure of this ordering; for a CP-net N , we note �N this
transitive closure. Note that this relation �N may not be total, and it may not be a strict
order since it may contain cycles, and thus not be irreflexive. We know from [7] that if
G is acyclic, then �N is a strict order (i.e. contains no cycles). In this case we say that
N is consistent;�N may still not be total, it can then be completed in a number of total
strict orders of O. If � is one of them, that is, if �∈ O and if �N⊆�, we say that � is
a completion of N . When �N is not irreflexive, we say that N is inconsistent.

We recall the following property [7], which will be useful later:

Proposition 1 ([7], Th. 7 and 8) Let N be an acyclic CP-net and x, y two out-
comes. Then x � y is implied by N if and only if there is a sequence of swaps
{x0,x1}, {x1,x2}, . . . , {xk−1,xk} such that x0 = x, xk = y, and for every 0 ≤
i < k, xi � xi+1, that is, if Xji is the attribute swapped between xi and xi+1, and if
u is the vector of values commonly assigned by x and y to the parents of Xi, then N
contains u : xiji � x

i+1
ji

;

2.3 Different forms of compatibility between sets of examples and CP-nets

We said earlier that the target of our learning process should be a strict total order2 over
all outcomes, but we have just seen that a CP-net N does not in general correspond
to such an order, since the preference relation �N induced from N is generally not
complete. Actually, �N can be seen as the set of all its completions, that is, a CP-net
expresses a set of linear preference relations.

If an example (x,y) is a swap, then either x �N y or y �N x, and clearly
we would like N to be in agreement with the example, that is, for instance, such that
x �N y. But if (x,y) is not a swap, there may be completions � and �′ of �N such
that x � y and y �′ x.

So we should start by discussing the possible ways of measuring to which extent a
given CP-net generalises from a given set of examples.

Definition 3 Let N be a CP-net over V . An example (x,y) is

• implied by N if x � y for every completion � of �N ;
• consistent with N if there is a completion � of �N such that x � y.

Furthermore, we will say that a set of examples E is:

• implied by N if for every completion � of �N , for every (x,y) ∈ E , x � y
(that is, if every example is implied by N);

• globally (or strongly) consistent with N if there is a completion� of�N such that,
for every (x,y) ∈ E , x � y.

• weakly consistent with N if for every (x,y) ∈ E , there is a completion � of �N
such that, x � y
(that is, if every example (x,y) ∈ E is individually consistent with N).

2 Our methodology and results would easily carry on to the problem of learning nonstrict pref-
erence relations (where indifference is allowed). We stick here to strict preference relation
because the presentation is simpler.

Clearly, strong consistency implies weak consistency, and, if N is consistent and if
E is implied by N , then it is strongly consistent with N .

Notice that an example (x,y) ∈ E is implied by N if and only if x �N y. Also,
it can be shown easily that E is strongly consistent with N if and only if the transitive
closure of �N ∪ E contains no cycle.

[10] try to learn a CP-net that implies a given set of examples. However, there are
cases where learning such a CP-net may not be appropriate.

We have (cf. Ex. 1) that the transitive closure of a set of examples may be a total
order over the set of alternatives, that the preferences specified by this set of examples
may be separable, although they cannot be implied by any CP-net. Consider now a
second example.

Example 4. E = {x1x2 � x1x2, x1x2 � x1x2}. This set of examples is obtained
from that of Example 1 by removing the third example. Intuitively, there is no reason to
think that the agent’s preference relation is not separable. However, there exists no CP-
net with G = 〈V, ∅〉 that implies E . When allowing for the more complicated structure
G = 〈V, {X1 → X2}〉 we obtain the conditional preference tables x1 � x1, x1 : x2 �
x2, x1 : x2 � x2, whose induced preference relation is x1x2 � x1x2 � x1x2 � x1x2.
Therefore, asking for a CP-net that implies E leads to a more complicated structure than
necessary (a preferential dependence betweenX1 andX2 whereas nothing tells us there
should be one).

In both Examples 1 and 4, E is strongly (and a fortiori weakly) consistent with the
separable CP-net {x1 � x1, x2 � x2}. Therefore weak and strong compatibility look
like more reasonable notions when it comes to learn CP-nets.

The difference between weak and strong compatibility (that we could also call local
and global compatibility) is more subtle. While strong compatibility requires that the
examples are all compatible with a single preference relation extending N , weak com-
patibility only requires each example to be compatible with some preference relation
extending N . As a consequence, if E is inconsistent (for instance because it contains
two opposite examples x � y and y � x, or more generally a series of examples
x1 � x2, x2 � x3, . . . , xp � x1), then there cannot be an N such that E is strongly
consistent with N , whereas it might still be the case that there is an N such that E is
weakly consistent with N , as it can be seen on the following example.

Example 5. E = {x1x2 � x1x2, x1x2 � x1x2}. E is clearly inconsistent, and yet E is
weakly consistent with the separable CP-net N whose tables are {x1 � x1, x2 � x2}.
Because E is inconsistent, it is not strongly consistent with N (nor with any other CP-
net).

Note that if N is itself inconsistent (i.e., possesses cycles), then no set of examples
can be strongly consistent withN whereas there are sets of examples which are implied
by N (and, a fortiori, are weakly consistent with N).

If the examples all come from a single user and are reliable, then weak consistency
is much too weak. However, if they come from multiple users (given that we want to
learn the generic preferences of a group of users), or a single user in different contexts,

then it becomes reasonable: for instance, we may learn that all users in the group un-
conditionally prefer x1 to x1 and x2 to x2, whereas their preferences between x1x2 and
x1x2 may differ (think as x1 and x2 as, respectively, “being invited to a fine dinner”
and “receiving a $50 award”). Moreover, weak consistency is relevant even for a single
user if we allow for errors or for changes of mind.

In the sequel, we will focus on weak consistency, because it is easier to characterize.
The computation of strong consistency is left for future research.

Definition 4 Let G = 〈V, E〉 be a graph over V and E a set of examples. E is

– weakly G-compatible if there there exists a CP-net N with graph G such that E is
weakly consistent with N .

– strongly G-compatible if there there exists a CP-netN with graph G such that E is
strongly consistent with N .

– implicativelyG-compatible if there there exists a CP-netN with graphG such that
E is implied by N .

Observation 1 IfG is acyclic then implicativeG-compatibility implies strongG-compatibility,
and strong G-compatibility implies weak G-compatibility.

This is just because if G is acyclic then any CP-net N whose associated graph is G
is consistent. We also have the obvious fact:

Observation 2 IfG ⊆ G′ and E is weakly (resp. strongly, implicatively)G′-compatible,
then E is weakly (resp. strongly, implicatively) G-compatible.

As usual in machine learning, we have a preference for learning simple structures:
here, simplicity is measured by the size of the tables, which is directly related to the
number of edges in the graph. In particular, the simplest CP-nets are the separable ones
(i.e., those without edges); next Section is dedicated to this specific class of CP-nets.

3 Learning separable preference relations

3.1 Computing a CP-net weakly consistent with a set of examples

We start by the simplest case of separable preference relations over binary domains,
that is:

– G = ∅;
– D = {x1, x1} × {xn, xn}.

We first define the following translation from sets of examples E to sets of clauses.
Let x � y be an example. Define Diff(x,y) = {xi | (x)i = xi and (y)i = xi} ∪
{xi | (x)i = xi and (y)i = xi}.

Now, with each example x � y we associate the following clause Cx�y that con-
tains xi iff xi ∈ Diff(x,y) and ¬xi iff xi ∈ Diff(x,y).

For instance, if x = x1x2x3x4 and y = x1x2x3x4 thenDiff(x,y) = {x1, x2, x4}
and Cx�y = x1 ∨ ¬x2 ∨ x4.

If E is a set of examples then ΦE is the set of clauses defined by ΦE = {Ce | e ∈ E}.
Lastly, we define the following one-to-one correspondence between truth assign-

ments over {x1, . . . , xn} and separable CP-nets over V . IfM is such a truth assignment,
then theNM contains the preference table xi � xi for every i such thatM |= xi and the
preference table xi � xi for every i such that M |= ¬xi. For instance, if M(x1) = >,
M(x2) = ⊥, M(x3) = ⊥ and M(x4) = > then NM contains the preference tables
{x1 � x1, x2 � x2, x3 � x3, x4 � x4}.

Proposition 2
M |= ΦE if and only if E is weakly consistent with NM .

Before proving Proposition 2 we establish the following simple Lemma, which is a
consequence of Proposition 1 (since it is very simple, we give its proof anyway).

Lemma 1. Let N be a CP-net with G containing no edges, and y 6= x. Then N |=
x � y if and only if N contains xi � xi for every xi ∈ Diff(x,y) and xi � xi for
every xi ∈ Diff(x,y).

Proof: Without loss of generality, let x = x1 . . . xn and y = x1 . . . xixi+1 . . . xn. If N
contains x1 � x1, . . . , xi � xi then N |= x � y. Conversely, without loss of gener-
ality assume N does not contain x1 � x1, which implies that it contains x1 � x1.
Consider a lexicographic preference relation � on D in which X1 is the most im-
portant attribute. We have y � x, and yet � extends �N , therefore we cannot have
N |= x � y. �

Now we establish Proposition 2:

Proof:

• (⇐) Let M be an interpretation and NM the CP-net associated with N . Assume
M 6|= ΦE , i.e., there exists an example x � y in E such that MN |= ¬Cx�y .
Without loss of generality, let x = x1 . . . xn and y = x1 . . . xixi+1 . . . xn. Then
we have M |= ¬x1 ∧ . . . ∧ ¬xi, therefore NM contains x1 � x1, . . . , xi � xi,
which by Lemma 1 implies that N |= y � x, therefore NM is not consistent with
x � y, and a fortiori, NM is not weakly consistent with E .

• (⇒) Let M be an interpretation over x1, . . . , xn and NM the CP-net associated
with M . Assume that NM is not weakly consistent with E , which means that there
exists an example x � y in E such that NM |= y � x. Without loss of generality,
let x = x1 . . . xn and y = x1 . . . xixi+1 . . . xn. By Lemma 1 this implies thatNM
contains x1 � x1, . . . , xi � xi}. This implies thatM |= ¬x1∧ . . .∧¬xi, therefore
M 6|= Cx�y , and a fortiori, M 6|= ¬ΦE .

�

Corollary 1. E is weakly 〈V, ∅〉-compatible if and only if ΦE is satisfiable.

This correspondence between unconditional CP-nets and interpretations over V en-
ables us to draw the following result:

Proposition 3 Deciding whether a set of examples is weakly 〈V, ∅〉- compatible is NP-
complete .

Proof: Membership is easy: given a set of examples E , guess an unconditional CP- net
N and check that E is weakly consistent with N , which can be done in time O(|E|.n)
using Lemma 1. For hardness we use the following reduction from 3SAT. Let Φ =
{C1, . . . , Cp} be a set of 3-clauses. For every C = l1 ∨ l2 ∨ l3 in Φ create an example
eC = (x � y) with

– x = ε1.x1ε2.x2 . . . εn.xn,
– y = ε′1.x1ε

′
2.x2 . . . ε

′
n.xn,

– for every i, εi.xi =

xi if lj = xi for some j
¬xi if lj = ¬xi for some j
xi otherwise

– for every i, ε′i.xi =

¬xi if lj = xi for some j
xi if lj = ¬xi for some j
xi otherwise

Now, let EΦ = {eC | C ∈ Φ}. For example, if Φ = {x1∨¬x2∨x3,¬x1∨x2∨x4, x2∨
x3 ∨ x4} then EΦ = {x1x2x3x4 � x1x2x3x4, x1x2x3x4 � x1x2x3x4, x1x2x3x4 �
x1x2x3x4}. We easily check that ΦEΦ = E , therefore, using Corollary 1 we get that Φ
is satisfiable if and only if E is xeakly 〈V, ∅〉-compatible. �

The generalization to non-binary domains is not difficult. Instead of having one
propositional symbol per attribute, we have one propositional symbol for each pair of
values of a attribute. For instance, if we have a attributeX whose domain is {d1, d2, d3}
then we have the three propositional symbols d1 � d2, d1 � d3 and d2 � d3. The
main difference with the binary case is the transitivity requirement. Let Trans =∧
Xi∈V TransXi be the propositional formula expressing transitivity – for instance,

for D1 = {d1, d2, d3} we have TransX1 = (d1 � d2 ∧ d2 � d3 → d1 � d3) ∧ (d1 �
d3 ∧ ¬(d2 � d3)→ ¬(d1 � d2) ∧ Note that Trans is polynomially long.

The one-to-one correspondence between interpretations and CP-nets now works
only for interpretations satisfying Trans, and Proposition 2 is generalized into:

Proposition 4 M |= ΦE ∧ Trans if and only if NM is weakly consistent with NM .

And Corollary 1 becomes:

Corollary 2. E is weakly 〈V, ∅〉-compatible if and only if ΦE ∧ Trans is satisfiable.

3.2 Computing a CP-net implied by a set of examples
It is easy to characterize whether there exists a CP-net that implies E . With each example
x � y we associate the following cube (conjunction of literals) Γx�y: it contains xi
iff xi ∈ Diff(x,y) and ¬xi iff xi ∈ Diff(x,y). Let ΓE =

∧
{Γe | e ∈ E}. Using

Lemma 1, we get the following result:

Proposition 5 M |= ΓE if and only if NM implies E .

Corollary 3. There exists a CP-net implying E if and only if ΓE is satisfiable.

Corollary 4. Deciding whether there exists a CP-net implying E is in P.

4 Learning non-separable preference relations over a fixed acyclic
structure

We no longer assume that the preference relation is separable, but we assume that it
can be represented by a CP-net over a fixed acyclic graph (V, E): we are given a set
of examples of pairwise comparisons E , and we want to generate a set P of preference
tables for the graph (V, E) such that the CP-netN = ((V, E),P), is weakly compatible
with E . Ideally, we would be able to generalize in a simple way the technique given
from Section 3: that is, we translate examples into propositional clauses, the models
of which would correspond to CP-nets that are weakly consistent with the examples.
Unfortunately, this is not simple.

The following result, by [7], provides a condition that ensures weak compatibility
of a CP-net with a given example o � o′ ∈ E :

Proposition 6 ([7] , Corollary 4.1) If N is an acyclic CP-net, o, o′ are two outcomes,
and if there exists an attribute X ∈ V such that o and o′ assign the same values to
all ancestors of X in N , and such that, given the values assigned by o and o′ to the
parents ofX , o assigns a more preferred value toX than that assigned by o′ according
to the preference table of N for X , then o′ 6�N o.

Note the condition is not necessary. However, given a set E of examples and a
given structure (V, E), we can generate propositional clauses that correspond to these
conditions: if we find a set of tables that satisfies these clauses, then we are certain that
the CP-net is weakly consistent with the set of examples.

Let us first define the propositional literals that will be used in the clauses. Given
an acyclic graph (V, E) and an attribute X ∈ V , let U be the set of its parents in the
graph: the table for X in a CP-net over (V, E) contains, for every assignment u for
the attributes in U , and any pair of distinct values x, x′ in the domain of X , either
u : x � x′ or u : x′ � x. So we can define a propositional variable whose truth value
says which is the case of the two possibilities. So our propositional language contains
a propositional variable for every pair of possible values for every attribute X ∈ V and
every assignment for the parents ofX . Without explicitly giving a name to this variable,
we will simply represent the literals for variable X and assignment u by u : x � x′ and
u : x′ � x.

Now, given a pairwise comparison of two outcomes o � o′, and a graph G =
(V, E), we define a clause ΨG,o�o′ as the set of the literals u : x � x′ for every
variable X such that o and o′ assign the same values to all ancestors of X in G and
the value assigned to X by o is x, that assigned by o′ is x′, and x 6= x′, and where
u is the value assigned by o and o′ to the parents of X . Note that if G = (V, ∅), then
ΨG,o�o′ = Φo�o′ . We will denote by ΨG,E the conjunction of the clauses corresponding
to all examples of E .

For example, suppose we have four binary variables A, B, C and D, and the fol-
lowing graph G:

A B C D

Then ΨG,abcd�abcd = a : b � b, whereas ΨG,abcd�abcd = a � a ∨ d � d.3

Corollary 5. If G is an acyclic graph and ΨG,E is satisfiable, then E is weakly G-
compatible.

In order to obtain strong compatibility, we can use a stronger formula: we let, for
every (o,o′) ∈ E , ΛG,o�o′ = ΨG,o�o′ ∧¬ΨG,o′�o. Then ΛG,E is the conjunction of the
formulas corresponding to all examples of E .

Proposition 7 If G is an acyclic graph and ΛG,E is satisfiable, then E is strongly G-
compatible.

Proof: We first define two relations between outcomes: we let o�No′ when the con-
ditions of proposition 6 are met: there exists a variable X ∈ V such that o and o′ assign
the same values to all ancestors of X in N , and such that, given the values assigned by
o and o′ to the parents of X , o assigns a more preferred value to X than that assigned
by o′ according to the preference table of N for X . Let then o �N o′ if o�No′ but
o′ 6�N o. [7] prove that the transitive closure of�N is irreflexive and contains �N .
Now suppose that a CP-net N satisfies ΛG,E , then�N is such that o�N o′ for every
(o,o′) ∈ E . Consider now a completion � of�N : it satisfies E , and it is a completion
of �N . �

Note that the formula ΛG,E is very strong: in the case where the graph has no vertex,
it ensures that the resulting CP-net implies the examples.

It is possible to define another formula, the unsatisfiability of which ensures that
E is not weakly G-compatible, but at a high cost: Proposition 1 indicates that an ex-
ample (x,y) is implied by a CP-net if and only if there is a swapping sequence x =
x0, x1, . . . , xn = y from x to y such that xi � xi+1 for every i; so the example is
weakly consistent if an only if for every sequence of swaps y = x0, x1, . . . , xn = x
from from y to x, xi � xi+1 holds for at least one i. However, the translation of a
set of examples into a set of clauses using this characterisation does not seem to be of
practical use, since there can be too many decreasing sequences of flips from one out-
come to another. Even if we restrict our attention to what we may call direct sequences,
ones in which no variable is flipped more that once, there will be be |Diff(x,y)|! such
sequences; and by doing so we would lose the practical usefulness of the approach.

We end up this section by briefly addressing complexity issues. We know from
[13] that dominance checking in acyclic CP-nets is NP-complete. Therefore, checking
whether an acyclic CP-net implies (resp. is weakly consistent with) a set of examples is

3 Note that the clause Ψo�o′ is never empty: assume it is, and take any order on V (w.l.o.g.,
X1 � . . . � Xn) being compatible with G (which is possible because G is acyclic); we prove
by induction on k that o and o′ assign the same values to Xk. This is true for k = 1, because
Ψo�o′ does not contain any literal referring to X1, and X1 has no parents in G. Assume it is
true for all j ≤ k. Ψo�o′ does not contain any literal referring to Xk+1, and the values of the
parents of Xk+1 (which are contained in {X1, . . . , Xk}) are the same in o and o′, therefore o
and o′ must assign the same values to Xk+1. Therefore we have o = o′, which is impossible
because examples involve distinct outcomes.

NP-complete (resp. coNP-complete). However, checking whether a given set of exam-
ples is weakly or implicatively G-compatible requires first finding the suitable CP-net;
such a CP-net is exponentially large in the maximum number of parents in G, therefore
weak and implicative G-compatibility may well be above NP and coNP, except in the
specific case where the number of parents in bounded by a constant (in the latter case,
implicative G-compatibility is NP-complete and weak G-compatibility is in Σp

2).

5 Conclusion

Learning a good representation of an ordering of multiattribute outcomes is a difficult
task because of the exponential number of these orderings. CP-nets provide a compact,
but incomplete, representation for such an ordering. Because not all orderings can be
exactly captured by a CP-net, it seems reasonable to learn a CP-net consistent with
all examples, rather than to look for a CP-net that would imply all of them. In the
specific case of separable preference relations, checking if a set of examples can be
implied by an acyclic CP-net can be achieved in polynomial time, but on the other hand,
we may often fail to find such a CP-net implying the examples. Moreover, although
checking if there exists a CP-net that is consistent with each example taken individually
is NP-complete (still in the case of separable preference relations), our translation of the
problem into clauses means that a good SAT solver may be able to find such a CP-net
in reasonable time. As for ensuring global consistency, this seems much more difficult:
we do not even have a proof of membership to NP.

We have assumed in the paper that a structure G is given, and that we want to learn
a CP-net over that graph. In general, we may not know the structure. In this case, the
goal of the learning problem is to learn the structure of the CP-net as well as conditional
preference tables for this graph. It seems natural to try to learn a CP-net over a structure
as simple as possible, as suggested in [10]. In order to achieve that, we can start with a
graph with no edge, and try to learn tables for this graph. If this is not successful, we try
to learn tables for CP-nets with one edge. Again, if this is not successful, we can try to
find tables for CP-nets with two edges and so on... Of course, enumerating all possible
structures would not be feasible, and would not be desirable either: it may be the case
that only a CP-net with a very complex structure is weakly consistent with all examples;
this may indicate that we are over-fitting the data, because data is noisy or because the
total ordering that we should learn cannot be represented by a CP-net. In order to keep
the CP-net simple, rather than aiming for a CP-net that is 100% weakly compatible
with the examples, we can compute, for each CP-net, its rate of weak compatibility
with the examples, and learn a CP-net that represents a good tradeoff between this rate
of compatibility and simplicity.

References

1. Perny, P., Zucker, J.D.: Preference-based search and machine learning for collaborative fil-
tering: the film-conseil movie recommender system. I3 1(1) (2001) 1–40

2. Miller, B.N., Albert, I., Lam, S.K., Konstan, J.A., Riedl, J.: Movielens unplugged: Ex-
periences with an occasionally connected recommender system. In: Proceedings of ACM

2003 Conference on Intelligent User Interfaces (IUI’03), Chapel Hill, North Carolina, ACM
(2003)

3. Viappiani, P., Faltings, B., Pu, P.: Evaluating preference-based search tools: a tale fo two ap-
proaches. In: Proceedings of the Twenty-first National Conference on Artificial Intelligence
(AAAI-06). (2006) 205–210

4. Viappiani, P., Faltings, B., Pu, P.: Preference-based search using example-critiquing with
suggestions. Journal of Artificial Intelligence Research 27 (2006) 465–503

5. Chen, L., Pu, P.: Survey of preference elicitation methods. Technical Report 200467, Ecole
Polytechnique Fédérale de Lausane (2004)

6. Keeney, R.L., Raiffa, H.: Decision with Multiple Objectives: Preferences and Value Trade-
offs. Wiley (1976)

7. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for rep-
resenting and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research 21 (2004) 135–191

8. Ha, V.A., Haddawy, P.: Problem-focused incremental elicitation of multi-attribute utility
models. In: UAI. (1997) 215–222

9. Guo, Y., Müller, J., Weinhardt, C.: Learning user preferences for multi-attribute negotiation:
An evolutionary approach. In: CEEMAS. (2003) 303–313

10. Athienitou, F., Dimopoulos, Y.: Learning CP-networks: a preliminary investigation. In:
Proceedings of the 3rd Multidisciplinary Workshop on Advances in Preference Handling
(PREF’07). (2007)

11. Brafman, R.I., Domshlak, C.: Introducing variable importance tradeoffs into CP-nets. In:
Uncertainty in Artificial Intelligence: Proceedings of the Eighteenth Annual Conference.
(2002) 69–76

12. Wilson, N.: Consistency and constrained optimisation for conditional preferences. In: Pro-
ceedings of the 16th European Conference on Artificial Intelligence (ECAI’04). (2004) 888–
892

13. Domshlak, C., Brafman, R.: CP-nets—reasoning and consistency testing. In: Proceedings
of KR0-2. (2002) 121–132

