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Abstract. Conjoint analysis is family of techniques that originated in
psychology and later became popular in market research. The main ob-
jective of conjoint analysis is to measure an individual’s or a population’s
preferences on a class options that can be described by parameters and
their levels. We consider preference data obtained in choice based con-
joint analysis studies, where one observes test persons’ choices on small
subsets of the options. There are many ways to analyze choice based con-
joint analysis data. Here we want to compare two approaches, one based
on statistical assumptions (discrete choice models) and a direct regres-
sion approach. Our comparison on real and synthetic data indicates that
the direct regression approach outperforms the discrete choice models.

1 Introduction

Conjoint analysis is a popular family of techniques mostly used in market re-
search to assess consumers’ preferences, see [4] for an overview and recent devel-
opments. Preferences are assessed on a set of options that are specified by multi-
ple parameters and their levels. In general conjoint analysis comprises two tasks:
(a) preference data assessment, and (b) analysis of the assessed data. Common
to all conjoint analysis methods is that preferences are estimated from conjoint
measurements, i.e., measurements taken on all parameters simultaneously.

Choice based conjoint analysis is a sub-family of conjoint analysis techniques
named after the employed data assessment/measurement method, namely a se-
quence of choice experiments. In a choice experiment a test person is confronted
with a small number of options sampled from a parametrized space, and has to
choose his preferred option. The measurement is then just the observation of the
test person’s choice. Choice based conjoint analysis techniques can differ in the
analysis stage. Common to all methods is that they aim to compute a scale on
the options from the assessed choice data. On an ordinal scale that is a ranking
of all the options, but more popular is to compute an interval scale where a
numerical value, i.e., a scale value, is assigned to every option. The interpreta-
tion is, that an option that gets assigned a larger scale value is more preferred.
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Differences of scale values have a meaning, but there is no natural zero. That
is, an interval scale is invariant under translation and re-scaling by a positive
factor.

The purpose of our paper is to compare two analysis approaches on measured
and synthetic data. Both approaches compute an interval scale from choice data.
The first approach builds on probabilistic modeling and can be seen as an exten-
sion of the popular discrete choice methods, see for example [7], to the case of
conjoint measurements. The second approach is direct regression introduced by
Evgeniou, Boussios and Zacharia [2] that builds on ideas from maximum margin
classification aka support vector machines (though applicability of the kernel
trick, which mostly contributed to the popularity of support vector machines,
seems not so important for conjoint analysis). We also study a geometrically
inspired direct regression approach based on computing the largest ball that can
be inscribed into a (constraint) polytope. Both approaches, i.e., discrete choice
models and direct regression, can be used to compute the scale for either a pop-
ulation of test persons from choice data assessed on the population, or for an
individual solely from his choice data. There is also a third option, namely to
compute the scale for an individual from his choice data and the population data
weighted properly. Here we are not going to discuss this third option.

2 Notation

Formally, the options in the choice experiments are elements in the Cartesian
product A = A1 × . . .×An of parameter sets Ai, which in general can be either
discrete or continuous—here we assume that they are finite. The choice data
are of the form a � b, where a = (a1, . . . , an), b = (b1, . . . , bn) ∈ A and a was
preferred over b by some test person in some choice experiment. Our goal is to
compute an interval scale v : A→ R on A from a set of choice data.

Often it is assumed that the scale v is linear, i.e., that it can be decomposed
as

v(a) = v
(
(a1, . . . , an)

)
=

n∑
i=1

vi(ai),

where vi : Ai → R. In the case of continuous parameters Ai the linearity of the
scale is justified when the parameters are preferentially independent, for details
see [5]. For finite parameter sets linearity still implies preferential independence,
but the reverse is in general not true anymore. Nevertheless, in practice linearity
is almost always assumed. Also the two methods that we are going to discuss
here both assume linearity of the scale1. The discrete choice models approach
first estimates the scales vi from the choice data individually first and then
combines them in a second step. Note that the choice data are obtained from
conjoint measurements, i.e., choices among options in A and not in Ai. The direct
regression (maximum margin or largest inscribed ball) approach estimates the

1 The linearity assumption can be mitigated by combining dependent parameters into
a single one, see [3] for a practical example.



scales vi simultaneously from the choice data. Note that both approaches have
to estimate the same number of parameters, namely all the values vi(a), a ∈
Ai, i = 1, . . . , n.

3 Discrete Choice Models

Discrete choice models deal with the special case of a single parameter, i.e., in
a sense the non-conjoint case. Let the finite set A denote this parameter set.
Choice data are now of the form a � b with a, b ∈ A and the goal is to compute
v : A→ R or equivalently {va = v(a) | a ∈ A}. Discrete choice models make the
assumption that the observed choices are outcomes of random trials: confronted
with the two options a, b ∈ A a test person assigns values ua = va + εa and
ub = vb + εb, respectively, to the options, where (the error terms) εa and εb are
drawn independently from the same distribution, and chooses the option with
larger value. Hence the probability pab that a is chosen over b is given as

pab = Pr[ua ≥ ub] = Pr[va + εa ≥ vb + εb] = Pr[va − vb ≥ εb − εa]

Discrete choice models can essentially be distinguished by the choice of distribu-
tion for the εa. Popular choices are normal distributions (Thurstone’s (probit)
model [6]) or extreme value distributions (Bradley-Terry’s (logit) model [1]), see
also [7]. The values va can be computed for both models either via the difference
va − vb from the probability pab which can be estimated by the frequency fab

that a was preferred over b in the choice experiments, or computationally more
involved by a maximum likelihood estimator. Here we introduce a least squares
approach using the frequency estimates for the pab.

3.1 Thurstone’s Model (probit)

In Thurstone’s model [6] the error terms εa are drawn from a normal distribution
N(0, σ2) with expectation 0 and variance σ2. Hence the difference εb− εa is also
normally distributed with expectation 0 and variance 2σ2 and hence

pab = Pr[ua ≥ ub] = Pr[εb − εa ≤ va − vb]

=
1√

4πσ2

∫ va−vb

−∞
e−

x2

4σ2 dx = Φ

(
va − vb√

2σ

)
,

where Φ is the cumulative distribution function of the standard normal distri-
bution

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2dy.

This is equivalent to
va − vb =

√
2σΦ−1(pab).

Using the frequency fab that a was preferred over b (number of times a was
preferred over b divided by the number that a and b have been compared) we
set

vab =
√

2σΦ−1(fab).



3.2 Bradley-Terry’s Model (logit)

In Bradley-Terry’s model [1] the error terms εa are drawn from a standard Gum-
bel distribution, i.e., the distribution with location parameter µ = 0 and scale
parameter β = 1. Since the difference of two independent Gumbel distributed
random variables is logistically distributed we have

pab = Pr[ua ≥ ub] = Pr[εb − εa ≤ va − vb]

=
1

1 + e−(va−vb)
=

eva−vb

1 + eva−vb
=

eva

eva + evb
.

This implies
eva

evb
=

pab

1− pab
,

which is equivalent to

va − vb = ln
(

pab

1− pab

)
.

Analogously to what we did for Thurstone’s model we set

vab = ln
(

fab

1− fab

)
.

3.3 Computing Scale Values

From both Thurstone’s and Bradley-Terry’s model we get an estimate vab for
the difference of the scale values va and vb. Our goal is to estimate the va’s
(and not only their differences). This can be done by computing va’s that best
approximate the vab’s (all equally weighted) in a least squares sense. That is, we
want to minimize the residual

r(va|a ∈ A) =
n∑

a,b∈A;b 6=a

(va − vb − vab)2.

A necessary condition for the minimum of the residual is that all partial deriva-
tives vanish, which gives

∂r

∂va
= 2

∑
b∈A;b 6=a

(va − vb − vab) = 0.

Hence
|A|va =

∑
b∈A

vb +
∑

b∈A;b 6=a

vab.

Since we aim for an interval scale we can assume that
∑

b∈A vb = 0. Then the
values that minimize the residual are given as

va =
1
|A|

∑
b∈A;b 6=a

vab.



We can specialize this now to the discrete choice models and get for Thurstone’s
model

va =
√

2σ
|A|

∑
b∈A;b 6=a

Φ−1(fab),

and for Bradley-Terry’s model

va =
1
|A|

∑
b∈A;b 6=a

ln
(

fab

1− fab

)
.

3.4 Multi-parameter (conjoint) case

Now we turn to the multi-parameter case where the options are elements in
A = A1 × . . . × An. We assume a linear model and describe a compositional
approach to compute the scales for the parameters Ai. In a first step we compute
scales vi using a discrete choice model for the one parameter case, and then in
a second step compute re-scale values wi to make the scales vi comparable. Our
final scale for A is then given as v =

∑n
i=1 wivi, i.e.,

v
(
(a1, . . . , an)

)
=

n∑
i=1

wivi(ai).

To compute the scales vi we make one further assumption: if a = (a1, . . . , an) ∈ A
is preferred over b = (b1, . . . , bn) ∈ A in a choice experiment we interpret this
as ai is preferred over bi to compute the frequencies faibi . If the parameter lev-
els in the choice experiments are all chosen independently at random, then the
frequencies faibi should converge (in the limit of infinitely many choice experi-
ments) to the frequencies that one obtains in experiments involving only a single
parameter Ai.

To compute the re-scale values wi we use a maximum margin approach (es-
sentially the same approach that was introduced by Evgeniou et. al to compute
a scale v : A→ R by direct regression). The approach makes the usual trade-off
between controlling the model complexity (maximizing the margin) and accu-
racy of the model (penalizing outliers). The trade-off is controlled by a parameter
c > 0 and we assume that we have data from m choice experiments available.

minwi,zj

∑n
i=1 w

2
i + c

∑m
j=1 zj

s.t.
∑n

i=1 wi

(
vi(ai)− vi(bi)

)
+ zj ≥ 1,

if (a1, . . . , an) � (b1, . . . , bn) in the j’th choice experiment.
zj ≥ 0, j = 1, . . . ,m

4 Direct Regression

The regression approach that we described to compute the re-scale values for
discrete choice models can be also applied directly to compute scale values. We
start our discussion again with the special case of a single parameter, where we
have to estimate va = v(a) for all a ∈ A.



4.1 Single Parameter Case

The naive approach to direct regression would be to compute scale values va ∈ R
that satisfy constraints of the form va−vb ≥ 0 if a ∈ A was preferred over b ∈ A
in a choice experiment. The geometric interpretation of this approach is to pick
a point in the constraint polytope, i.e., the subset of [−l, l]|A| for sufficiently
large l that satisfies all constraints. There are many such points that all encode
a ranking of the options in A that complies with the constraints. Since we have
only combinatorial information, namely choices, there is no way to distinguish
among the points in the constraint polytope—except we have contradictory in-
formation, i.e., choices of the form a � b and b � a which render the constraint
polytope empty. We will have contradictory information, especially when we as-
sess preferences on a population, but also individuals can be inconsistent in their
choices. It is essentially the contradictory information that makes the problem
interesting and justifies the computation of an interval scale instead of an or-
dinal scale (i.e., a ranking or an enumeration of all partial rankings compliant
with the choices) from choice information. The choice information now can no
longer be considered purely combinatorial since also the frequency of a � b for
all comparisons of a and b will be important. To avoid an empty constraint
polytope we introduce a non-negative slack variable zj for every choice, i.e.,
va − vb + zj ≥ 0, zj ≥ 0 if a was preferred over b in the j’th choice experiment.
Now the constraint polytope will always be non-empty and it is natural to aim
for minimal total slack, i.e.,

∑k
j=1 zj if we have information from m choice ex-

periments. But since va = constant for all a ∈ A is always feasible we get the
optimal solution

va = constant, and
m∑

j=1

zj = 0.

To mitigate this problem we demand that the constraints va−vb +zj ≥ 0 if a � b
in the j’th choice experiment a should be satisfied with some confidence margin,
i.e., the constraints get strengthened to va − vb + zj ≥ 1. Finally, as we did
when computing re-scale values for discrete choice models we control the model
complexity by maximizing the margin. That is, we end up with the following
optimization problem for direct regression of scale values:

minva,zj

∑
a∈A v

2
a + c

∑m
j=1 zj

s.t. va − vb + zj ≥ 1,
if a � b in the j’th choice experiment.

zj ≥ 0, j = 1, . . . ,m

4.2 Conjoint Case

Now we assume again A = A1× . . .×An. Of course we could proceed as for the
discrete choice models and re-scale scales computed with direct regression for
the different parameters Ai, but we can also use direct regression to compute



all scale values simultaneously. With a similar reasoning as in for the single
parameter case we obtain the following optimization problem:

minvi(a),zj

∑n
i=1

∑
a∈Ai

vi(a)2 + c
∑m

j=1 zj

s.t.
∑n

i=1 vi(ai)− vi(bi) + zj ≥ 1,
if (a1, . . . , an) � (b1, . . . , bn) in the j’th choice experiment.

zj ≥ 0, j = 1, . . . ,m

4.3 Largest Inscribed Ball

For the conjoint case we also study a geometrically inspired direct regression
approach, namely computing the largest ball inscribed into the polytope defined
by the constraints

n∑
i=1

vi(ai)− vi(bi) ≥ 0, if (a1, . . . , an) � (b1, . . . , bn) in a choice experiment.

We want to estimate the vi(a) for i = 1, . . . , n and all a ∈ Ai. That is, we
want to estimate the entries of a vector v with m =

∑n
i=1mi components,

where mi = ‖Ai‖. A choice experiment is defined by the characteristic vectors
χa ∈ {0, 1}m, whose i’th component is 1 if the corresponding parameter level is
present in the option a, and 0 otherwise. The constraint polytope can now be
re-written as

vt(χa − χb) ≥ 0, if a � b in a choice experiment,

or equivalently vtxab ≥ 0, where xab = (χa − χb) /‖χa − χb‖.
The distance of a point v ∈ Rm to the hyperplane (subspace) {v ∈ Rm | vtxab =

0} is given by vtxab. The largest inscribed ball problem now becomes when us-
ing the standard trade-off between model complexity and quality of fit on the
observed data

maxv,r,z r + c
∑k

j=1 zj

s.t. vtxab ≥ r − zk, if a � b in the j’th choice experiment.
zj ≥ 0, j = 1, . . . , k

where r is the radius of the ball and c is the trade-off parameter. This is a linear
program, in contrast to the direct regression approach based on maximizing the
margin which results in a convex quadratic program.

The largest inscribed ball approach does not work directly. To see this observe
that the line v1 = v2 = . . . = vm = constant is always feasible. If the feasible
region contains only this line (which often is the case), then the optimal solution
of our problem would be on this line. A solution v1 = v2 = . . . = vm = constant
however does not give us meaningful scale values. To make deviations from the
line vi = constant possible we add a small constant ε > 0 to the left hand side
of all the comparison constraints. In our experiments we chose ε = 0.1.



4.4 Cross Validation

The direct regression approaches (and also our re-scaling approach) have the
free parameter c > 0 that controls the trade-off between model complexity and
model accuracy. The standard way to choose this parameter is via k-fold cross
validation. For k-fold cross-validation the set of choice data is partitioned into
k partitions (aka strata) of equal size. Then k − 1 of the strata are used to
compute the scale values, which can be validated on the left out stratum. For
the validation we use the scale value to predict outcome in the choice experiments
in the left-out stratum. Given v(a) and v(b) for a, b ∈ A such that a and b have
been compared in the left-out stratum, to predict the outcome one can either
predict the option with the higher scale value, or one can make a randomized
prediction, e.g., by using the Bradley-Terry model: predict a with probability
ev(a)/

(
ev(a) + ev(b)

)
. The validation score can then either be the percentage of

correct predictions or the average success probability for the predictions. For
simplicity we decided to use the percentage of correct predictions.

5 Data Sets

We compared the different approaches to analyze choice based conjoint analysis
data on two different types of data sets: (a) data that we assessed in a larger
user study to measure the perceived quality for a visualization task [3], and (b)
synthetic data that we generated from a statistical model of test persons. So let
us describe the visualization study first.

5.1 Visualization Study

The purpose of volume visualization is to turn 3D volume data into images that
allow a user to gain as much insight into the data as possible. A prominent exam-
ple of a volume visualization application is MRI (magnetic resonance imaging).
Turning volume data into images is a highly parametrized process among the
many parameters there are for example

(1) The choice of color scheme: often there is no natural color scheme for the
data, but even when it exists it need not best suited to provide insight.

(2) The viewpoint: an image is a 2D projection of the 3D data, but not all such
projections are equally valuable in providing insights.

(3) Other parameters like image resolution or shading schemes.

In our study [3] we were considering six parameters (with two to six levels each)
for two data sets (foot and engine) giving rise to 2250 (foot) or 2700 (engine)
options, respectively. Note that options here are images, i.e., different renderings
of the data sets.

On these data sets we were measuring preferences by either asking for the
better liked image (aesthetics), or for the image that shows more detail (de-
tail). That is, in total we conducted four studies (foot-detail, foot-aesthetics,



engine-detail, and engine-aesthetics). We had 317 test persons for the two de-
tails question studies and 366 test persons for the aesthetics studies, respectively.
In each study the test persons were shown two images from the same category,
i.e., either foot or engine, rendered with different parameter settings and asked
which of the two images they prefer (with respect to either the aesthetics or the
details question). Hence in each choice experiment there were only two options,
see Figures 1 and 2 for examples.

Fig. 1. Data set foot: Which rendering do you like (left or right)?

Fig. 2. Data set engine: Which rendering shows more detail (left or right)?

In [3] we evaluated the choice data using the Thurstone discrete choice model
for the whole population of test persons. There we used a different method to
re-scale the values from the first stage than described here. The method we used
is based on the normal distribution assumption and thus not as general as the
method described here.



5.2 Synthetic Data

We were also interested to see how well the different methods perform when we
only use information provided by a single person. Unfortunately the information
provided individually by the test persons in the visualization studies is very
sparse (only 20 comparisons per person). Thus we also generated synthetic data
as follows:

(1) We simulated a study with five parameters and five levels each.
(2) We generated 200 synthetic test persons represented by a scale value for

every parameter level. The scale values for the levels of each parameter were
chosen from normal distributions with mean −2,−1, 0, 1 and 2, respectively.
The normal distributions always had the same standard deviation, which we
choose to be 2, 5 or 8 (for three different studies). Varying the standard devi-
ation was used to model different degrees of heterogeneity in the population.

(3) The synthetic test persons provided answers to 200 binary choice problems
following the Bradley-Terry model. That is, given two options a and b and
test person dependent scale values v(a) and v(b), respectively, the test person
prefers a over b with probability pab = ev(a)/

(
ev(a) + ev(b)

)
. To simulate the

choices we generated random numbers uniformly in [0, 1] and compared them
to the pab’s.

6 Results and Discussion

As pointed in Section 3 when assigning scale values to parameter levels in the
discrete choice approach, we estimate the probability that level a is preferred
over level b by the relative frequency fab that a was preferred over b. For sparse
data (only very few comparisons per test person) the frequency matrix can also
be sparse even in the sense of missing entries, i.e., levels a and b that never have
been compared. To deal with sparseness we exploit a “transitivity of preferences”
assumption. Whenever a � b and b � c we interpret this also as a (weak) vote
for a � c. We implemented this idea as follows: we initialized fab with either
the measured relative frequency, or when this is not available with 1/2. Then
we updated fab iteratively until convergence using the following formula (with
some constant c ∈ (0, 1), we obtained good results for c = 0.3):

fab = (1− c)fab +
c

n− 2

∑
d6=a,b

fadfdb

fadfdb + fdafbd

That is, we smoothed the frequencies using all the information available.

6.1 Visualization Studies

Let us start with a summary of the performance of our analysis methods on
the data of the four visualization studies. The summary is given in Table 1. We
consider the Thurstone and Bradley-Terry discrete choice models, the regression



approach either compositional, i.e., with two stages as for the discrete choice
models, or direct, and the largest inscribed ball regression approach. Here we re-
port k-fold cross validation values, i.e., the percentage of correct predictions (on
the left out strata). We were using 20 random partitions into k = 10 strata (also
for everything that follows) and report the mean and estimated standard devi-
ation of the percentage of correct predictions (i.e., for every correct prediction
percentage that we report we had 200 data points).

engine-aesthetics engine-detail foot-aesthetics foot-detail

Thurstone 0.7535(8) 0.8265(8) 0.6640(10) 0.7388(5)

Bradley-Terry 0.7536(9) 0.8267(5) 0.6640(1) 0.7387(10)

Compositional regression 0.7397(10) 0.8280(10) 0.6539(20) 0.7069(20)

Direct regression 0.7529(9) 0.8401(20) 0.6638(10) 0.7411(10)

Largest ball 0.7530(9) 0.8414(7) 0.6638(16) 0.7405(10)

Table 1. Average percentage of correct predictions for the four visualization studies.
Shown is the mean for k = 10 strata and the estimated standard deviation in brackets.
See also Figure 3.

For the data that we report in Table 2 we consider only data provided by
a test person to compute personal scale values for this person. The presented
results are the mean percentage of correct predictions on the left out strata
also averaged over all test persons that participated in the study. The standard
deviation is computed with respect to the left out strata and the different test
persons.

engine-aesthetics engine-detail foot-aesthetics foot-detail

Thurstone 0.636(2) 0.670(2) 0.597(2) 0.596(3)

Bradley-Terry 0.640(3) 0.675(2) 0.598(3) 0.599(3)

Compositional regression 0.636(3) 0.688(2) 0.598(2) 0.601(3)

Direct regression 0.618(3) 0.651(2) 0.585(2) 0.589(3)

Largest ball 0.616(5) 0.631(4) 0.578(3) 0.580(4)

Table 2. Average percentage of correct predictions for the four visualization studies
for individual test persons. For the prediction only data provided by the individual test
person were used. See also Figure 3.

While the direct regression approaches performed slightly but not statisti-
cally significant better than the compositional approaches (including the discrete
choice approaches) in the non-personalized analysis they perform significantly
worse if one uses the approach for personalized prediction on the same data sets.
That is one reason why we also generated synthetic data. We wanted to study the



behavior of the approaches when we have more data per test person available.
Note that in the visualization studies we were restricted to only very few choice
experiments per test person since these test persons volunteered to take part in
the studies during an exhibition at the computer science department of ETH
Zürich. Our conjecture was that the direct regression approach outperforms the
other approaches once we have more data per test person.

Another interesting finding regarding the visualization studies is that we
were not able to detect a statistically significant difference between Thurstone’s
model and Bradley-Terry’s model. We expected that Bradley-Terry’s model to
perform slightly better, because of the more realistic fat tail assumption of the
underlying distribution. Actually, it performs slightly better in the personalized
analysis, but the advantage is not statistically relevant.
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Fig. 3. Summarizing Tables 1 and 2.

Finally, in Table 3 we report on the dependence of the direct regression
approach on the regularization parameter c that controls the trade-off between
model complexity and training error. Here we report only on a non-personalized
analysis, since the behavior in the other settings is similar.

Interestingly, the direct regression approach only marginally dependent on
the choice of the regularization parameter c. All the results that we report here
are at least in the range of the other approaches.

6.2 Synthetic Data

As we have mentioned earlier our main motivation to generate synthetic data
was to study the effect of the number of choice experiments per test person on
the performance of the different approaches.



engine-aesthetics engine-detail foot-aesthetics foot-detail

100 0.7525(6) 0.8401(20) 0.6635(10) 0.7402(10)

10 0.7529(10) 0.8396(20) 0.6636(10) 0.7401(10)

1 0.7529(10) 0.8341(20) 0.6638(10) 0.7411(10)

0.01 0.7405(10) 0.8313(10) 0.6585(10) 0.7167(10)

Table 3. Average percentage of correct predictions for the four visualization studies
analyzed with direct regression using the values c = 100, 10, 1 and 0.01 for the trade-off
parameter.

To check the validity of our model from which we generated the artificial
data we first show in Table 4 the correct prediction percentages for the direct
regression and the Bradley-Terry discrete choice model for varying standard
deviation (which is one of the parameters we can control when generating the
synthetic data).

Standard Deviation Direct reg. pers. Bradley-Terry pers.

2 0.716(1) 0.765(3) 0.723(1) 0.749(4)

5 0.606(1) 0.783(3) 0.619(1) 0.745(2)

8 0.574(1) 0.784(3) 0.565(2) 0.749(4)

Table 4. Comparison of the average percentages of correct predictions on the artificial
data with 40 choice experiments per person. Shown are prediction percentages for
the direct regression and the Bradley-Terry discrete choice model approaches (non-
personalized and personalized).

As expected it becomes more difficult to predict the outcome of a choice ex-
periment on the population level when we increase the standard deviation (which
is meant to model population heterogeneity), whereas in the personalized set-
ting (where we consider only data provided by a test person to compute personal
scale values for this test person) the prediction accuracy does not depend on the
variance. The heterogeneity is actually large enough that it pays off (in terms of
prediction accuracy) to personalize even for standard deviation 2.

In Table 5 we summarize the dependence on the number of choice experi-
ments (comparisons) for the different approaches in the personalized setting. The
results for the personalized setting show that—as we expected—the percentage
of correct predictions hardly improves with growing number of choice experi-
ments per test person. At the same time—which is also expected—the variance
of correct prediction percentages goes down. But we do not only observe that
the percentage of correct prediction increases with growing number of choice
experiments per test persons, but also that the direct regression approaches
(which includes the largest inscribed ball approach) outperform the Bradley-



# Comparisons Direct reg. non-pers. Bradley-Terry non-pers. Largest ball non-pers.

20 0.703(4) 0.717(2) 0.692(4) 0.714(2) 0.658(3) 0.730(1)

40 0.765(3) 0.7164(8) 0.749(4) 0.723(1) 0.754(5) 0.7296(8)

60 0.812(2) 0.7231(6) 0.767(2) 0.7147(5) 0.786(3) 0.7234(4)

80 0.839(2) 0.7192(5) 0.788(1) 0.7169(5) 0.821(4) 0.7197(4)

100 0.847(2) 0.7246(4) 0.805(2) 0.7198(5) 0.839(2) 0.7173(3)

120 0.860(1) 0.7302(3) 0.815(1) 0.7143(5) 0.851(1) 0.7220(3)

140 0.869(1) 0.7306(2) 0.824(1) 0.7295(3) 0.866(1) 0.7207(3)

160 0.8773(9) 0.7291(3) 0.836(1) 0.7259(4) 0.8741(7) 0.7361(3)

180 0.8785(8) 0.7188(3) 0.841(1) 0.7242(3) 0.8806(7) 0.7298(3)

200 0.8841(8) 0.7239(2) 0.850(1) 0.7226(2) 0.8832(4) 0.7357(2)

Table 5. Average percentage of correct predictions for the synthetic data set using 20
to 200 choice experiments per (artificial) test person. Shown are results for the direct
regression (maximum margin), Bradley-Terry, and maximum inscribed ball regression
approach. See also the figure below.
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Terry model (which essentially behaves the same as the Thurstone model). Thus
here we observe statistically significant what we already conjectured for the vi-
sualization studies, namely, that direct regression outperforms all other methods
once enough data are available. Actually, the results show that the amount of
data need not be very large before direct regression outperforms the other ap-
proaches.

Let us also briefly comment on the results in the non-personalized setting,
where the percentage of correct predictions hardly improves with increasing num-



ber of comparisons per person. This means that if our goal is to compute scale
values for a population of respondents, it can be enough for the test persons to
participate in few choice experiments, e.g., 20 for our model (but probably more
for conjoint studies with more parameters). This is good news for studies in
which the respondents cannot (or are not willing to) participate in many choice
experiments.

7 Conclusion

We compared two discrete choice approaches, namely Thurstone’s model and
Bradley-Terry’s model, with a direct regression approach for choice based con-
joint data analysis. We also introduced a new direct regression approach based
on inscribing the largest ball into a constraint polytope. At least our personalized
results on a synthetic data set suggest that both direct regression approaches
outperform the discrete choice models—provided there are enough data per test
person available.

Our main interest is in the use of conjoint analysis techniques to measure
users’ preferences for visualization and imaging algorithms. In the conjoint stud-
ies that we perform to this end we typically only get test persons to participate
in a small number of choice experiments (about 20 choice experiments per test
person — which takes roughly three minutes). In this range of numbers of choice
experiments discrete choice models even seem to have a small advantage over
direct regression (at least in non-personalized analysis). In the future we plan to
conduct more user studies to figure out the best analysis approach for varying
numbers of choice experiments and objectives (e.g., non-personalized vs. person-
alized).

References

1. R.A. Bradley and M.E. Terry. Rank analysis of incomplete block designs, i. the
method of paired comparisons. Biometrika, 39:324–345, 1952.

2. Theodorus Evgeniou, Constantinos Boussios, and Giorgos Zacharia. Generalized
robust conjoint estimation. Marketing Science, 24(3):415–429, 2005.

3. Joachim Giesen, Klaus Mueller, Eva Schuberth, Lujin Wang, and Peter Zolliker.
Conjoint analysis to measure the perceived quality in volume rendering. IEEE
Trans. Vis. Comput. Graph., 13(6):1664–1671, 2007.

4. A. Gustafsson, A. Herrmann, and F. Huber. Conjoint analysis as an instrument of
market research practice. In A. Gustafsson, A. Herrmann, and F. Huber, editors,
Conjoint Measurement. Methods and Applications, pages 5–45. Springer, Berlin,
2000.

5. R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and
Value Trade-Offs. Cambridge University Press, Cambridge, 1993.

6. L. L. Thurstone. A law of comparative judgement. Psychological Review, 34:273–
286, 1927.

7. K. Train. Discrete Choice Methods with Simulation. Cambridge University Press,
2003.


