
Learning SVM Ranking Function from User
Feedback Using Document Metadata and Active

Learning in the Biomedical Domain

Robert Arens

University of Iowa, Iowa City, IA, 52242
robert-arens@uiowa.edu

Abstract. Information overload is a well-known problem facing biomed-
ical professionals. MEDLINE, the biomedical bibliographic database,
adds hundreds of articles daily to the millions already in its collection.
This overload is exacerbated by the lack of relevance-based ranking for
search results, as well as disparate levels of search skill and domain ex-
perience of professionals using systems designed to search MEDLINE.
We propose to address these problems through learning ranking func-
tions from user relevance feedback. We hypothesize that learning from
feedback will give performance similar to learning from the entire data
set. We hypothesize that, by employing active learning techniques, we
can achieve this performance using feedback on a fraction of the to-
tal number of results. We further hypothesize that learning from meta-
data, specifically the Medical Subject Heading (MeSH) terms associated
with MEDLINE citations, will result in better performance than learn-
ing from texutal features. We test our hypotheses through simulation,
using the OHSUMED data set. Our results show that ranking functions
learned from user feedback approach the performance of ranking func-
tions learned from the entire data set using one half of the total data
available. Our results also show that learning from MeSH features greatly
outperforms learning from textual features.

1 Introduction

MEDLINE, the National Library of Medicine’s bibliographic database, is an
ubiquitous resource used globally by biomedical researchers and professionals. It
contains over 16 million journal citations, with thousands more added every week
[1]. Searching MEDLINE is done most often via Entrez PubMed, the NLM’s
search engine operating over the database. While Entrez is a robust retrieval
system, users interacting with Entrez often face information overload. In part,
this is due to the enormity of the database; a search for “heart disease” returns
over seven hundred thousand results. However, a greater issue is the lack of
relevance-based ranking of these results. Users are limited in their choice of
ranking to date of publication, author names, or journal of publication. This
means that the results most relevant to the user’s query may be buried under
thousands of irrelevant results, forcing the user to sort through them manually.

Deeper issues exacerbate the problem. To avoid manually searching through
potentially thousands of search results to find the citations they need, medical
professionals must spend years developing the expertise necessary to use Entrez
efficiently [2]. Even experienced users may find themselves unable to construct
these efficient queries if they lack deep knowledge regarding the subject of their
search.

We propose to address these problems by learning ranking functions from
user feedback. A ranking function learned in this way will put the most relevant
results above the less relevant, putting the best information first. Learning from
feedback does not require a great amount of training, so it can be done by a novice
user. Furthermore, a user does not need deep domain knowledge; giving positive
feedback on citations that “look right” ensures that similar citations will be
ranked highly. Finally, each ranking function will be tailored to the user training
it, while traditional query-based ranking methods such as tf*idf would produce
the same ordering for any given query. Joachims [3] argued that, “experience
shows that users are only rarely willing to give explicit feedback.” We agree with
this point in general, but experience has shown us that biomedical professionals
are highly motivated to give feedback if the overhead of feedback is offset by
utility they gain from the system.

Our hypothesis is that a ranking function learned from feedback given on a
small percentage of intelligently chosen examples from a retrieval set will per-
form comparably to a ranking function learned from the entire retrieval set.
We will explore how to choose these examples and how much feedback to re-
quest from the user. We further propose to learn our ranking functions from
document metadata, as opposed to textual features. Citations in MEDLINE are
annotated using the NLM’s controlled vocabulary of Medical Subject Headings,
called MeSH. We hypothesize that learning from these features will be superior
to learning from query-based textual features. We will evaluate the quality of the
rankings produced by our method, along with the amount of feedback required
to produce that ranking.

2 Learning Ranking Functions from User Feedback

Presenting retrieved documents according to the likelihood of their relevance to
a user’s query is a standard practice in information retrieval [4]. Here, we present
a framework for learning a function to produce such a relevance ranking from
feedback provided by the user. As this is an online task, two factors beyond
raw system performance must be addressed. First, the system must run quickly
enough to provide the user a reasonable search experience. Second, the amount
of feedback required for learning must be a reasonable fraction of the number
of search results. If either of these factors are not well addressed, the system
will provide no benefit to users over traditional search engines. We choose to
employ ranking SVMs for rank function learning because of their speed, and
their performance in learning ranking functions [3][5][6].To ensure users will have

to provide as little feedback as possible, we employ active learning to choose
examples that will be most useful for learning [7].

Fig. 1. Illustration of learning ranking functions from user feedback

2.1 Initial Retrieval

We take initial retrieval as given. PubMed is an excellent retrieval system, em-
ploying many recall-boosting strategies such as term expansion and synonym
matching, which we do not care to replicate. For our experiments, we use the
existing OHSUMED dataset (described in section 3.1) and perform no retrieval
on our own. Our production system will use the Entrez eUtils1, which will al-
low users to submit queries to our system just as they would to PubMed itself.
Document abstracts and their associated feature vectors will be stored locally.

2.2 The Feedback Round

A “feedback round” is one iteration of choosing examples for feedback, requesting
feedback from the user, learning from the feedback, and checking the stopping
criterion. Future references will be made to this sequence of steps as a per-
formance measure, indicating one measure of how much overhead the user has
1 http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils help.html

incurred using the system. The number of rounds multiplied by the number of
examples seen per round gives the total number of examples seen, which is the
other overhead measure used.

2.3 Ranking

As previously stated, we learn and rank using the ranking SVM algorithm. Given
a collection of data points ranked according to preference R∗ with two points
di,dj ∈ R∗, and a linear learning function f , we can say

di � dj ⇔ f(di) > f(dj) (1)

where � indicates that di is preferred over dj . We can define the function f as
f(d) = w · d, where

f(di) > f(dj) ⇔ w · di > w · dj (2)

The vector w can be learned via the standard SVM learning method using slack
variables [8],

minimize 〈w ·w〉+ C
∑

i,j∈|R|

ξij

subject to ∀(di,dj) ∈ R∗ : w · di ≥ w · dj + 1− ξij

∀(i, j) : ξij ≥ 0

(3)

Discovery of the support vectors and the generalization of the ranking SVM is
done differently [3]. For data that are linearly separable, the ξij are all equal
to 0. In this case, we can view the ranking function as projecting the data
points onto the separating hyperplane. In this case, the support vectors are the
two points di and dj nearest each other on the hyperplane. Generalization is
achieved by calculating w to maximize the distance between these closest points.
The distance between these two points is calculated as w(di−dj)

‖w‖ . Taking this as
our margin γ, we can, as with the classification SVM algorithm [8], maximize
the margin by minimizing ‖w‖.

2.4 Choosing Examples

In order to learn a ranking function, we require a training set. This set will
be provided to us by the user in the form of explicit preference feedback on a
subset of the retrieved documents. In order to ensure that we are asking for
user feedback on as few examples as possible, we choose this subset via active
learning.

Active learning describes a learning method wherein the learning algorithm
itself has some control over which examples are added to its training set. Specif-
ically, we need to ask a user to provide labels for some number of unlabeled

examples. The learner chooses these examples based on some measure of learn-
ing utility; for example, choosing examples which will decrease the region of
uncertainty in a learned function [7]. Repeated rounds of active learning im-
prove both the learned function and the examples chosen for learning. Taking
our previous measure as an example, the reduction in the region of uncertainty
produces a function with better generalization power; however, reducing the re-
gion of uncertainty has an added benefit of leaving behind only examples which
continue to contribute to uncertainty.

2.5 Eliciting Feedback

Feedback is elicited by asking the user to rate a document’s relevance to his/her
information need. We allow users to express preference on a neutral point scale
(“yes”, “maybe”, “no”), rather than using a forced-choice (“yes or no”) method,
as the former shows higher measurement reliability [9]. This facilitates simulation
using OHSUMED, allowing the user to rate a document as “definitely relevant”,
“possibly relevant”, or “not relevant”.

2.6 Stopping Criterion

At some point, feedback rounds must terminate. Rather than arbitrarily choosing
a number of rounds or amount of feedback required before termination, feedback
ends when the lists produced by the ranking function appear to be converging to-
wards a stable list. Our convergence criterion is based on the Kendall’s tau rank
correlation coefficient, calculated between on the current and immediately pre-
vious orderings produced by the ranking function. Once the correlation between
these rankings exceeds a certain threshold, feedback rounds terminate.

3 Experimental Design

3.1 Simulation using OHSUMED

Experiments were carried out via simulation, using the OHSUMED data set [10].
OHSUMED is a test collection of MEDLINE citations, created from the results of
106 queries run against a five-year span of MEDLINE documents. 16,141 query-
document pairs were annotated for relevance, classified as definitely, possibly, or
not relevant. Five queries returned no definitely relevant citations, and have been
excluded from the simulations. All experiments were run ten times per query,
and the results averaged.

3.2 Features for Learning

Metadata features were created from the MeSH metadata available for each
document, with feature vectors built based on binary inclusion of individual
MeSH terms. Arranged as a concept hierarchy, MeSH encodes the content of

the citation as well as extra-textual features. While these features, such as the
type of article referred to by the citation (e.g. clinical trial, meta-analysis, etc.),
may be of great importance to the user, novice users may not know how to
formulate queries expressing this need. Furthermore, relevance ranking systems
based solely on textual features may not reflect this importance.

Textual features were taken from the OHSUMED section of LETOR [11], a
learning-to-rank benchmark data set. These consist of ten “low-level” features
from the abstract and title fields of the OHSUMED documents (for a total of
twenty), and five “high-level” features from the combination of title and abstract.
Low-level features include traditional textual measures such as normalized term
frequency, tf*idf, etc., as well as features found in [6]. High-level features include
measures such as BM25.

It should be noted that MeSH terms offer a further improvement over textual
features in that annotators assigning MeSH terms to citations in MEDLINE
have access to the entire article, while textual features for the MEDLINE user
are limited to the title and abstract.

We hypothesize that ranking functions learned from MeSH data will outper-
form those learned from LETOR data, both in ranking performance and the
overhead required to reach similar performance levels.

3.3 Example Selection

Two active learning strategies were employed for example selection. We used
random sampling, simply choosing unseen examples at random, as a baseline
against which these two methods will be compared.

The first active learning method is top sampling. As discussed in Cao et.
al. [6], ranking functions should have their performance optimized towards top-
ranked documents. Therefore, top sampling chooses unseen documents ranked
highest by the current ranking function at each round for feedback. The other
active learning method is mid sampling. Similar to Cohn et. al. [7], we wish
to reduce uncertainty in our ranking function. A learned ranking function will
rank the best and worst documents with great confidence, but less so those in
the middle. These middle-ranked documents are the ones ranked with the least
confidence; therefore, learning from them should result in a stronger model.

We hypothesize that both top and mid sampling will outperform random
sampling, both in ranking performance and overhead cost. We further hypothe-
size that top sampling will outperform mid sampling in ranking performance, as
mid sampling is training to improve overall performance as opposed to focusing
on the performance of highly-ranked documents.

3.4 Examples per Round

The number of examples presented for feedback in each round may influence
both how quickly the ranking function is learned, and the quality of the ranking
function. We investigated varying between one and five examples per round.

We hypothesize that functions learned from more feedback per round will
have better ranking performance than those learned from fewer examples per
round. This is an obvious hypothesis to make; more examples per round means
more total training examples. However, we further hypothesize that learning
from more examples per round will require users to look at fewer total examples.
Our intuition is that since each round of training will produce a stronger ranking
function, the active learning will be better at each round compared to ranking
functions trained with fewer examples.

3.5 Stopping Criterion

As previously described, our stopping criterion is based on list convergence as
calculated by Kendall’s tau. Our intuition is that highly correlated orderings
indicate that rankings produced by the ranking function are converging, and
we are therefore not learning any new information from feedback. Thresholds
between 0.9 and 0.5 were investigated.

We hypothesize that higher thresholds will produce better ranking perfor-
mance, but the overhead required to meet the threshold will increase.

4 Evaluation

4.1 Metrics

We evaluate ranking performance using normalized discounted cumulative gain
(NDCG) [12], a commonly used measure when multiple levels of relevance are
considered. Discounted cumulative gain (DCG) at position i in a ranked list of
documents is calculated as

DCG@i =
{

ri if i=1
DCG@(i-1) + ri

log2i otherwise (4)

where ri is the relevance score of the document at position i. For our evaluation,
relevant documents receive a score of 2, possibly relevant documents receive a
score of 1, and irrelevant documents receive a score of 0. NDCG is calculated
by dividing the DCG vector by an ideal DCG vector, DCGI , calculated from an
ideally ranked list (all documents scoring 2, followed by documents scoring 1,
followed by documents scoring 0). Perfect ranking scores an NDCG of 1.0 at all
positions. We compute NDCG@10 for our evaluation. We evaluate user overhead
by counting the number of feedback rounds to produce a given ranking. Both
metrics are averaged over the 101 queries used for simulation.

4.2 Results

Learning from MeSH features clearly outperformed learning from LETOR fea-
tures in ranking performance. An upper bound for performance comparison was
calculated by ranking documents for each OHSUMED query using a ranking

@1 @2 @3 @4 @5 @6 @7 @8 @8 @10

MeSH 0.995 0.993 0.993 0.992 0.995 0.995 0.995 0.995 0.995 0.995

LETOR 0.624 0.634 0.622 0.617 0.606 0.604 0.596 0.593 0.596 0.596
Table 1. NDCG calculated across all queries at positions 1 through 10 for ranking
SVMs trained on all data available for a query.

SVM learned from all documents in the query, for both MeSH and LETOR
feature vectors. Table 1 shows SVMs learned from MeSH terms yielded nearly
perfect ranking performance, vastly outperforming SVMs learned from LETOR
features. A performance gain is to be expected, as the MeSH terms are tailored
to this data; however, we did not expect the gain to be this great. This trend
continues in the active learning experiments. As shown in table 2, across all
sampling methods, thresholds, and examples per round, ranking performance of
SVMs learned from MeSH features outperform their LETOR counterparts. For
thresholds above 0.5, Though LETOR SVMs consistently reached convergence
before MeSH SVMs, indicating a much lower overhead, the performance was
consistently poor.

Random Sampling

Threshold MeSH LETOR
1 2 3 4 5 1 2 3 4 5

0.5
0.446 0.49 0.529 0.559 0.574 0.359 0.369 0.384 0.393 0.405
7.197 4.551 3.542 3.287 2.975 7.329 4.823 3.804 3.386 3.088
7.2 9.10 10.63 13.15 14.88 7.329 9.646 11.41 13.54 15.44

0.6
0.464 0.5 0.532 0.566 0.604 0.358 0.373 0.388 0.401 0.411
6.866 4.722 3.886 3.49 3.393 7.461 4.533 3.858 3.54 3.19
6.87 9.44 11.66 13.96 16.96 7.461 9.065 11.58 14.16 15.95

0.7
0.474 0.51 0.563 0.592 0.626 0.361 0.372 0.392 0.407 0.425
7.591 5.25 4.573 4.201 4.108 7.672 4.788 4.223 3.736 3.601
7.591 10.5 13.72 16.8 20.54 7.672 9.576 12.67 14.94 18

0.8
0.484 0.543 0.606 0.648 0.687 0.358 0.376 0.405 0.412 0.422
8.411 6.197 5.881 5.861 5.845 7.76 5.284 4.612 4.326 4.144
8.411 12.39 17.64 23.45 29.22 7.76 10.57 13.84 17.3 20.72

0.9
0.521 0.604 0.668 0.726 0.77 0.37 0.384 0.419 0.44 0.456
10.94 9.593 10.06 10.87 10.90 9.205 7.073 6.681 6.64 6.618
10.94 19.19 30.18 43.48 54.52 9.205 14.15 20.04 26.56 33.09

Mid Sampling

Threshold MeSH LETOR
1 2 3 4 5 1 2 3 4 5

0.5
0.455 0.488 0.504 0.533 0.549 0.346 0.367 0.381 0.389 0.399
7.205 4.142 3.489 3.182 2.943 7.25 4.395 3.564 3.167 3.039
7.205 8.28 10.47 12.73 14.71 7.25 8.79 10.69 12.67 15.19

Continued next page

Threshold MeSH LETOR
1 2 3 4 5 1 2 3 4 5

0.6
0.451 0.495 0.519 0.535 0.561 0.358 0.37 0.385 0.4 0.396
7.065 4.701 3.853 3.324 3.269 7.172 4.564 3.776 3.312 3.122
7.065 9.402 11.56 13.3 16.35 7.172 9.129 11.33 13.25 15.61

0.7
0.465 0.505 0.531 0.559 0.576 0.358 0.37 0.38 0.392 0.401
7.43 5.064 4.2 3.961 3.794 6.957 4.662 3.979 3.703 3.46
7.43 10.13 12.6 15.85 18.97 6.957 9.324 11.94 14.81 17.3

0.8
0.475 0.529 0.551 0.59 0.607 0.361 0.38 0.395 0.395 0.408
8.45 5.961 5.34 5.017 4.967 7.987 5.195 4.395 4.168 4.068
8.45 11.92 16.02 20.07 24.84 7.987 10.39 13.19 16.67 20.34

0.9
0.51 0.567 0.612 0.635 0.655 0.362 0.381 0.407 0.427 0.441
10.54 9.471 9.303 9.079 8.866 9.195 6.574 6.413 6.014 5.975
10.54 18.94 27.91 36.32 44.33 9.195 13.15 19.24 24.06 29.88

Top Sampling

Threshold MeSH LETOR
1 2 3 4 5 1 2 3 4 5

0.5
0.463 0.522 0.562 0.616 0.669 0.374 0.389 0.412 0.443 0.457
6.956 4.425 3.779 3.446 3.464 7.42 4.571 3.774 3.391 3.192
6.956 8.85 11.34 13.78 17.32 7.42 9.143 11.32 13.56 15.96

0.6
0.481 0.543 0.6 0.666 0.724 0.373 0.395 0.427 0.447 0.468
7.332 4.992 4.443 4.184 4.122 7.433 4.862 3.944 3.677 3.33
7.332 9.984 13.33 16.74 20.61 7.433 9.725 11.83 11.71 16.65

0.7
0.49 0.58 0.667 0.742 0.802 0.382 0.406 0.438 0.464 0.472
7.666 5.958 5.642 5.548 5.451 7.677 4.922 4.163 3.785 3.56
7.666 11.92 16.93 22.19 27.26 7.677 9.844 12.49 15.14 17.8

0.8
0.536 0.66 0.767 0.827 0.866 0.387 0.413 0.456 0.483 0.502
8.862 8.228 8.195 7.975 7.761 8.208 5.469 4.822 4.501 4.414
8.862 16.46 24.58 31.9 38.81 8.208 10.94 14.47 18 22.07

0.9
0.648 0.799 0.866 0.897 0.918 0.407 0.461 0.498 0.538 0.541
14.97 14.94 14.75 14.05 12.83 9.432 7.502 6.89 6.843 6.285
14.97 29.88 44.25 56.18 64.14 9.432 15 20.67 27.37 31.43

Table 2: Performance for all sample methods, examples per round,
and thresholds. Top value in each row is NDCG@10, middle value
is number of rounds until the convergence threshold is met, bottom
value is total number of examples seen until convergence.

Top sampling produced better ranking functions than the other two methods.
Curiously, mid sampling performed worse than random sampling. This may be
due to the fact that mid sampling is more likely to encounter documents ranked
as possibly relevant as opposed to definitely relevant or irrelevant than random
sampling. Mid sampling did incur less overhead than the other active learning
methods, but it appears as though it converged to a poor final ranking.

In all cases, a greater number of examples per round produced better ranking
performance. This is to be expected, as more examples per round yields a larger
set of training data. More examples per round also decreased rounds to conver-
gence; however, the decrease in the number of rounds was never great enough to
lead to a decrease in the total number of examples seen.

As expected, higher thresholds for convergence resulted in higher ranking
performance, at the cost of more feedback rounds. While performance climbed
steadily, there was a marked jump in overhead between thresholds of 0.8 and
0.9.

5 Discussion

Overall, our results are encouraging. We have achieved ranking performance
within 8.2% of perfect ranking after an average of 12.8 feedback rounds and
64.14 examples seen, using top sampling with five examples per round and a
convergence threshold of 0.9.

Experimentation has shown that our hypotheses regarding ranking perfor-
mance are correct, with the exception of the performance of mid sampling. How-
ever, our assumptions regarding the overhead incurred to reach convergence as
it relates to features for learning and sampling methods seem to have been incor-
rect. Poor performance was linked with less overhead, with better performance
always demanding more overhead. While rounds to convergence fell slightly as
the number of examples per rounds increased, this small decrease is insignificant
as the overall number of examples seen by the user increased.

This led us to investigate whether the number of examples seen was the
dominant predictor of performance. As shown in figure 2, however, sampling
method played a greater role in performance. Top sampling provided better
ranking performance for any number of examples seen, in many cases requiring
fewer than half the number of examples to reach performance similar to the
other active learning methods.

A note must be made regarding the stopping criterion. Since termination
is determined as a function of learning, it effectively falls to the active learning
technique to ensure that termination is not premature, as choosing uninformative
examples will cause little to no shift in the ranking function. If this were the case,
the learning process would not fulfill its potential, denied the chance to exhaust
its stock of “good” examples to learn from. The effect of this would be that
an active learning method which could potentially perform as well as another
method would have worse performance and fewer total examples seen than a
method which did not end prematurely. Examples of this happening may be
present in this work, especially at high thresholds looking at 4 or 5 examples per
round.

We argue that this effect is likely to be minimal. It is clear that at lower
thresholds and lower examples per round, the active learning method itself is the
dominant factor for performance. In figure 3, we see that each active learning
method tends to improve as the number of examples increases; however, at no

Fig. 2. Comparison of the total number of examples seen to NDCG@10 for all sampling
methods, at thresholds 0.7, 0.8 and 0.9. Markers indicate number of examples per
round, from one to five.

Fig. 3. The effect of increasing the number of examples per round on the total number
of examples seen, across all thresholds, for top sampling.

point does it appear that a method would “catch up” to a higher performing
method if allowed to continue learning.

The remainder of our analysis focuses on factors affecting top sampling.
Something to note in figure 2 is that performance gains began leveling off af-
ter reaching an NDCG@10 of around 0.8, requiring increasingly more examples
for smaller gains in performance. Considering the OHSUMED queries returned
152.27 documents on average, it may appear that decent performance requires
feedback on an unreasonable percentage of the returned data. Recall, however,
that queries to MEDLINE often result in thousands of results. Further investi-
gation is required to see if queries which return such large results sets require
feedback on a similar percentage of documents, a similar number of documents,
or something in between.

We see in figure 3 that increasing examples per round increased the total
number of examples seen before the convergence threshold was reached. This
ran counter to one of our hypotheses; we expected that seeing more examples
in each feedback round would reduce the total number of examples required to
meet the convergence threshold. As this was not the case, and since examples
per round had only a small effect on rounds until convergence, rounds until
convergence must be dependent almost entirely on the convergence threshold.

We must conclude, therefore, that examples per round and the convergence
threshold may be largely immaterial to the learning process. If ranking perfor-
mance is tied only to the active learning method and number of examples seen,
there may simply be a lower bound on the number of rounds required for effective
active learning to take place, requiring a number of examples per round equal
to the number of examples needed to reach the desired ranking performance
divided by this number of rounds. Further investigation is required to determine
this lower bound, if indeed it exists.

6 Related Work

Much of the literature on active learning for SVMs has focused on classification,
as opposed to ranking [13][14]. Brinker [15] applied active learning to learning
ranking SVMs; however, this research focused on learning label ranking func-
tions, which is a fundamentally different task from document ranking. Tong and
Chang [16] used pool-based active learning for image retrieval. Their method of
selecting examples for labeling was based on the finding that by choosing ex-
amples which shrink the size of the version space in which the optimal weight
vector w∗ can lie, the SVM learned from those examples will approximate w∗.
Therefore, examples are chosen which will most nearly bisect the version space
they occupy. This was achieved in practice by choosing examples based on their
proximity to the SVM boundary; examples close to the boundary are likely to
be more centrally located in the version space, and are thus more likely to bisect
it.

Ranking SVMs have been used to learn ranking functions from implicitly
generated feedback [3][17]. Yu [5] noted that methods such those in [16] could not

be extended to learning ranking SVMs, as the ranking problem is more complex,
and thus carried out selective sampling for learning ranking SVMs by selecting
the most ambiguously ranked examples for labeling. This was done by noting that
ambiguity in ranking could be measured based on how similarly the examples
were ranked, with the closest pairs of examples being the most ambiguous. This
method for selection is directly analogous to that in [16], even though it does not
address reduction in version space; just as the support vectors in a classifying
SVM are those examples closest to the SVM boundary, the support vectors in a
ranking SVM are those examples that are most closely ranked. You and Hwang
[18] used a similar framework and data set to learn ranking in a context-sensitive
manner. Both of these works focused on general data retrieval, as opposed do
document retrieval.

MeSH terms have been used as a tool to aid biomedical professionals both in
performing searches on MEDLINE, and in analyzing search results [19][20][21].
In particular, Lin et. al. [21] used MeSH terms along with keywords to generate
labels for documents clustered together using textual features, while Blott et. al.
[20] clustered based on the MeSH terms themselves. To the best of our knowledge,
ours is the only existing work which attempts document ranking using solely
MeSH terms.

7 Conclusion and Future Work

We have presented a framework for learning ranking functions from user feed-
back, designed for biomedical professionals searching MEDLINE. We have shown
that learning these functions using MeSH metadata is superior to learning from
textual features, and that by employing active learning we can achieve near per-
fect ranking performance using less than half of the available data. Questions
remain regarding whether the amount of data required to achieve this perfor-
mance is proportional to the size of the number of documents retrieved, and
whether there is a lower bound on the number of feedback rounds required to
gain the benefit of active learning.

Future work will investigate these questions. It will also include implementa-
tion of the system as an web-based search utility. A user study will be conducted
with parameters similar to experiments presented here in order to assess its per-
formance on “live” queries. System capabilities will be expanded to allow users
to save results of previous searches along with their associated ranking functions,
as well as applying previously learned ranking functions to new search results.

The system presented here will also be adapted to other domains, particu-
larly that of legal discovery. As discovery is often carried out over collections
containing millions of documents, we can expect to see feedback on hundreds
or thousands of documents, instead of dozens. However, we clearly cannot ex-
pect users to give feedback on a percentage of retrieved documents similar to
the percentage used in these experiments. Answering the question of how much
feedback is required to learn a reasonable ranking function will be central to the
feasibility of application to this domain.

References

1. National Library of Medicine: MEDLINE fact sheet (May 2008)
2. Bronander, K.A., Goodman, P.H., Inman, T.F., Veach, T.L.: Boolean search ex-

perience and abilities of medical students and practicing physicians. Teaching and
Learning in Medicine 16(3) (Sep 2004) 284–9

3. Joachims, T.: Optimizing search engines using clickthrough data. In: Proc. ACM
SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (SIGKDD ’02).
(2002) 133–142

4. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley
(1999)

5. Yu, H.: SVM selective sampling for ranking with application to data retrieval.
In: Proc. Intl. ACM SIGKDD Conf. on Knowledge Discovery and Data Mining
(SIGKDD ’05). (Jun 2005)

6. Cao, Y., Xu, J., Liu, T.Y., Li, H., Huang, Y., Hon, H.W.: Adapting ranking SVM
to document retrieval. (2006)

7. Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning.
Machine Learning 15(2) (May 1994) 201–221

8. Christianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press (2000)

9. Churchill Jr, G.A., Peter, J.P.: Research design effects on the reliability of rating
scales: A meta-analysis. Journal of Marketing Research 21(4) (1984) 360–375

10. Hersh, W., Buckley, C., Leone, T., Hickam, D.: OHSUMED: An interactive re-
trieval evaluation and new large test collection for research. In: Proc. ACM SIGIR
Intl. Conf. on Information Retrieval (SIGIR ’94). (1994)

11. Liu, T.Y., Xu, J., Qin, T., Xiong, W., Li, H.: Letor: Benchmark dataset for research
on learning to rank for information retrieval. In: Proc. ACM SIGIR Intl. Conf. on
Information Retrieval (SIGIR ’07). (2007)

12. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems 20(4) (October 2002) 422–446

13. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research (2001) 45–66

14. Ertekin, S., Huang, J., Bottou, L., Giles, C.L.: Learning on the border: Active
learning in imbalanced data classification. In: Proc. ACM Conf. on Information
and Knowledge Management (CIKM ’07). (2007)

15. Brinker, K.: Active learning of label ranking functions. In: Proc. Intl. Conf. on
Machine Learning. (2004)

16. Tong, S., Chang, E.: Support vector machine active learning for image retrieval.
ACM Int. Conf. on Multimedia (MM ’01) (2001)

17. Radlinski, F., Joachims, T.: Query chains: Learning to rank from implicit feedback.
In: Proc. ACM Intl. Conf. on Knowledge Discovery and Data Mining (SIGKDD
’05). (2005)

18. You, G., Hwang, S.: Personalized ranking: A contextual ranking approach. In:
Proc. ACM Symp. on Applied Computing (SAC ’07). (2007)

19. Haynes, R.B., McKibbon, K.A., Wilczynski, N.L., Walter, S.D., Werre, S.R.: Op-
timal search strategies for retrieving scientifically strong studies of treatment from
MEDLINE: analytical survey. BMJ (British Medical Journal) 330(7501) (May
2005) 1179

20. Blott, S., Camous, F., Gurrin, C., Jones, G.J.F., Smeaton, A.F.: On the use of
clustering and the MeSH controlled vocabulary to improve MEDLINE abstract
search. (2005)

21. Lin, Y., Li, W., Chen, K., Liu, Y.: A document clustering and ranking system
for exploring MEDLINE citations. Journal of the American Medical Informatics
Assn. 14(5) (2007) 651–661

