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Abstract. An advantage of rule induction over other machine learning 

algorithms is the comprehensibility of the models, a requirement for many data 

mining applications. However, many real life machine learning applications 

involve the ranking of cases and classification rules are not a good 

representation for this. There have been numerous studies to incorporate 

ranking capability into decision trees, but not rules. We propose a framework 

for ranking with rules. The framework extends and substantially improves on 

the reported methods of using decision trees for ranking. It introduces three 

types of rule ranking methods: post analysis of rules, hybrid methods, and 

multiple rule set analysis.  We also study the impact of rule learning bias on the 

ranking performance. An empirical study has been conducted to evaluate some 

of the above methods. The results have been compared with those reported for a 

decision tree with ranking capability.  
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1   Introduction 

Classification accuracy has been used as a major performance metric for machine learning 

algorithms.  However, many real life machine learning applications involve the ranking of 

cases instead of their classification. Ranking of cases is usually based on some kind of 

reliability, likelihood or numeric assessment of the quality of each classification (e.g., a 

probability value of a class membership). In other words, the decision-making process extends 

the class membership prediction to include an estimate of the reliability for this prediction. For 

example, in credit application processing, the goal is to rank applicants in terms of their 

likelihoods of profitability and/or to predict loan defaults. This is significantly different than 

simply classifying them into qualified or non-qualified groups. Other decision-making 

applications where case ranking could be of importance include bankruptcy prediction, medical 

diagnosis, customer targeting for marketing campaigns and customer churn prediction.  In 

addition, the use of rule based models facilitates comprehensibility of the ranking process, 

which may represent an essential requirement for the decision ranking applications. Ranking of 

cases is also important for those decision-making applications where it is better not to make a 

decision without sufficient support than to make a wrong decision (e.g., medical and military 

applications). Such abstention in decision-making may be a preferable in many situations. 

The machine learning community has investigated the incorporation of ranking capability 

within a decision tree learning paradigm [9] [10] [11] [1]. However, little work has been done 

in ranking with rules. Although rules are similar to decision trees, there are also some important 

differences between them when used for ranking. Separate-&-conquer (covering) techniques of 



rule learning algorithms may generate rules that overlap, whereas divide-&-conquer techniques 

of decision trees do not. Rules may not cover some areas of a feature space, but leaf nodes of a 

decision tree cover the entire area of the feature space (Figure 1). These differences bring both 

research challenges and opportunities for developing methods of ranking cases with rules.  In 

addition to the above differences, a rule learning algorithm for a two class problem may only 

learn rules for one class, but a decision tree always includes leaf nodes for both classes. Rule 

learning algorithms tend to generate fewer rules than the number of leaf nodes of a decision 

tree.  

In this paper, we propose a framework for ranking with rules. Specifically, the framework 

presented in this paper extends and substantially improves on the reported methods for using 

decision trees for ranking. It introduces three types of rule ranking methods: post analysis of 

rules, hybrid methods, and multiple rule sets (rule ensembles and redundant rules). 

Methods for combining scores of overlapping rules are proposed and studied. We also 

investigate the impact of rule learning bias on the ranking performance. An empirical study has 

been conducted to evaluate some popular post analysis methods, methods for combining scores 

of overlapping rules, and impact of rule learning bias. 

 

 
Fig 1. Different modeling paradigms, (a) hyperplanes vs. (b) rule based 

representations) 
 

The reminder of the paper is organized as follows. Related work is discussed in Section 2. 

Section 3 describes the proposed framework. Section 4 reports on the experimental results. 

Finally, Section 5 concludes the paper with future research. 

2   Previous Work 

The idea of ranking examples using rules is not new. There is related research in expert 

systems, fuzzy logic, and cognitive science [2]. This section provides a summary of this 

research as well as the more closely related machine learning work. 

2.1   Expert System, Fuzzy Logic, and Cognitive Science 

MYCIN [4] is a well known rule-based expert system, in which each rule is assigned a certainty 

factor (CF) by domain experts. CF of different rules may be combined and/or propagated to 

(a) (b)



produce the CF of a decision inferred by MYCIN. In PROSPECTOR [12], an expert system to 

assist geologists working in mineral exploration, rules are assigned probability by human 

experts and are propagated and combined using Bayesian inference. 

Development of fuzzy rules has been studied widely in fuzzy logic. Examples include the 

work by Wang and Mendel [13], where a general method is developed to generate fuzzy rules 

from numerical data using linguistic variables. The degree of membership of an example 

depends on the degree of match of the example to a fuzzy rule.  

These attempts have resulted in methods for generating partial matching or fuzzy rules and 

examples are assigned scores based on how well they match those rules. In these approaches, 

examples that satisfy all conditions of a rule share the same score. Our proposed method, on the 

other hand, could assign different scores to different examples even when they satisfy all the 

conditions of a given rule. 

2.2   Rule Ranking in Machine Learning 

Previous machine learning research in ranking cases with rules include the study by Zhang and 

Michalski [14].  They developed a method for generating partial matching and scores are 

computed based on the degree of match of an example to the rules. Here, once again, examples 

that satisfy all conditions of a rule share the same score.  

The machine learning community has also investigated the incorporation of ranking 

capability within a decision tree learning paradigm. Most previous work falls within the 

following three groups of methods: 

 

 Learning Probability Estimation Trees. This group of methods has been reported by 

Provost and Domingos [11]. To alleviate the problem of uniform probability 

estimation (a defect that results in the poor probability-based ranking by decision 

trees), they proposed several techniques to improve the ranking performance of C4.5: 

turning off pruning and collapsing mechanism to keep the branches that contribute 

most to the quality of ranking and using Laplace correction at leave nodes for 

smoothing. They also pointed out that bagging, an ensemble method, could greatly 

improve decision trees in terms of probability-based ranking. 

 

 Tree Branching. Ferri et al. [7] introduced a method, called m-Branch, that generates 

probability estimates at leaves in a recursive manner so that on each path, the 

probability estimates on a parent node are propagated downwards to all of its 

children. Ling and Yan [10] report on the technique of averaging probability 

estimates from all the leaves of a tree. The contribution of each leaf is determined by 

the number of unequal parent attribute values (parent attributes of a leaf are defined 

as the attributes on the path from the leaf to the root) that the leaf has, compared with 

the unlabeled cases. 

 

 Hybrid Decision Trees. Kohavi [9] proposed a Naïve Bayes Tree (NBTree) that is a 

hybrid of decision tree and Naïve Bayes classifiers, where a Naïve Bayes classifier is 

deployed at each leaf to produce classification and probability estimation.  

3   A Framework for Ranking with Classification Rules 

A rule based classifier is typically defined as a disjunctive normal form of conditional rules that 

defines a mapping function from a set of m arguments or attributes (which can be either 



nominal or numeric) to a single nominal value, known as the class. Let us represent by D the 

set of d classes, usually simply referred by natural numbers 0, 1, 2, ... d-1, and by E  the set of 

examples. A classifier is a function f: E -> D. In a simplified scenario, a classifier with ranking 

capability computes a number or score for every example e  E and for every class i  D. 

A score may be interpreted differently depending on the application. In statistics, a score 

ranges from 0 to 1 and means the probability of the example belonging to a given class. In 

expert systems, a score may be interpreted as a certainty factor. In fuzzy logic, a score 

represents the degree of membership of the class. In cognitive science, a score could be defined 

as the typicality of the example being a member of the class. In other applications, it is just a 

score for ranking cases. 

The framework for ranking cases with classification rules presented in this paper consists of 

a set of different group of methods that can be used independently or jointly. Figure 2 depicts 

the taxonomy of methods. The framework extends and substantially improves on the reported 

methods of using decision trees for ranking. The framework introduces the following three 

groups of rule ranking computation methods: 

 Post analysis of rules 

 Hybrid methods 

 Rule ensembles and redundant rules 

In addition to the three groups above, we introduce methods for combining scores for 

overlapping rules. We also discuss the potential impact of variations of rule induction 

algorithms.  

 

 

 
 

Fig 2. Rule ranking computational methods 

 

3.1   Post Analysis of Rules  

In this group of methods, ranking scores are computed using rules generated by some rule 

induction algorithm plus additional information such as the number of positive and negative 

examples covered by each rule and/or ranges of attribute values. There are two subgroups of 

methods under this group, probability estimation and geometric methods. 
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3.1.1  Probability Estimation  

With probability estimation, the score of the example covered by a rule is computed as the ratio 

of the number of positive examples to the total number of examples covered by that rule. This 

approach has been explored in Probability Estimation Trees.  

In this simple probability estimation method, scores assigned by two different rules are 

identical as long as the above mentioned ratio is the same, no matter how many positive 

examples are actually covered by each rule. For example, all rules covering no negative 

examples result in the same score, namely one. A simple method for overcoming this problem 

is the Laplace correction, in which the score is computed using  
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where k and n are the numbers of positive examples and the total number of examples covered, 

respectively, and C is the number of classes. The score is the same for each example covered by 

the same rule. This becomes a serious problem when the number of rules generated by a rule 

induction algorithm is small. 

The probability estimation method, even with Laplace correction, ignores the absolute 

number of examples covered by the rule. A rule covering 9 positive examples and 10 negative 

examples receives the same score as a rule covering 90 positive examples and 100 negative 

examples. In real applications, however, even with similar precisions, rules covering more 

examples are preferred. An alternative option is to use F-measure for scoring:  
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where  is a parameter for assigning relative weights to recall and precision. When  is set to 1, 

recall and precision are weighted equally. F-measure favors recall with  > 1 and favors 

precision with  < 1. Namely, an F-measure with a large  value favors more general and less 

precise rules, while one with a small  value favors more specific and precise rules. When  = 

0, the F-measure score is the same as probability estimation.  

3.1.2 Geometric Methods 

As indicated above, the probability estimation method assigns the same score to all 

examples covered by the same rule. When the number of rules generated is small, this causes a 

problem for applications that need a fine grained ranking. For example, in one of our data 

mining applications, only 0.1% of the top ranked cases are selected for further investigations. If 

all rules cover more than 0.1% of the examples, we have no way to accurately select 0.1% of 

the top ranked cases. Geometric methods can help generate such fine grained rankings. 

Geometric methods have been used in decision trees [1] and assume that 

classifications/rankings of the examples near the rule boundary are less certain. In ranking with 

rules, there are two types of geometric methods, one for examples covered by a rule and one for 

examples that are not covered by any rules. The latter is also called partial matching. For an 

example covered by a rule, we can measure the distance between the example and the rule 

boundary or the center of the rule. The closer the example is to the boundary (or further away 

from the center), the smaller its score gets. The distance may also be weighted by the estimated 

probability of the rule. The geometric method for covered examples works for numeric 

attributes. 

Partial matching also computes the distance of an uncovered example to the boundary of a 

rule, but from outside of the rule. The closer to the boundary, the larger the score is. Again, the 



distance could be weighted by the estimated probability of the rule. A different view of partial 

matching is that partial matching differentiates from strict matching, which tests whether an 

example strictly satisfies a rule (satisfies all conditions). Partial matching computes a degree of 

match between an example and a rule. The degree of match can vary in the range from 0 

(matches no condition) to 1.0 (matches all conditions). Partial matching works for both numeric 

and nominal attributes.   

3.2   Hybrid Methods 

Hybrid methods integrate rule induction with other learning techniques that have ranking 

capabilities. These latter techniques include the Perceptron algorithm, Naïve Bayes, instance-

based learning, and prototype-based learning. For example, within each rule, a Perceptron may 

be learned. Figure 3 shows a rule with a linear classifier in a two dimensional space. The 

rectangle represents the rule and the line inside the rectangle represents the linear classifier. The 

white circles represent positive examples, while the gray ones represent negative examples. The 

linear classifier is used to assign a score to each of the examples covered by the rule.  

 

 
Fig 3. A rule with a linear classifier 

 

Rules and linear models or Naïve Bayes models may be learned together to optimize the 

performance of the hybrid method. Alternatively, rules may be learned first, and then other 

models are learned for each of the learned rules. As discussed in Section 2, many works have 

been done in building hybrid decision trees, e.g., Perceptron Tree and NBTree. 

3.3   Rule Ensembles and Redundant Rules 

Previous studies have shown that ensemble techniques can significantly improve the ranking 

performance of decision trees [3] [11]. In ensemble learning, multiple classifiers are learned, 

using approaches such as Bagging and Boosting.  Typically, in such ensembles, a majority vote 

technique is used to determine the final classification of an example. Similarly, the average 

score can be used for assignment of a final score to each example. Although little work has 

been done in building ensembles of rules (e.g., [8]), we believe such an ensemble can yield 

improved ranking performance.  

Previous studies have also shown how redundant rules could improve classification 

performance. Since redundant rules allow for finer grained rankings, it is worthwhile to design 

a rule induction algorithm for generating redundant rules for ranking.  



3.4   Computing Scores with Multiple Rules 

A rule induction algorithm usually generates a set of overlapping rules. In this section, we 

propose and discuss three simple methods, Max, Average, and Probabilistic Sum, for 

combining scores of an example covered by more than one rule. The Max approach simply 

takes the largest score of all the rules that cover the example. Given an example e and a set of l 

rules RS = {R1, …, Rl,}, the combined score of e using Max is computed as follows: 

)},({max),( 1 i
l
i RescoreRSescore , 

where score(e, Ri) is the score of e assigned by Rule Ri. The combined score of e using Average 

is computed as follows. 
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For rules that do not cover e, score(e, Ri) = 0 unless partial matching is applied. For the 

Probabilistic Sum method, the formula can be defined recursively as follows: 
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Both Average and Probabilistic Sum generate a finer grained ranking than Max. These three 

methods may also be used to combine scores of ensembles of rules. 

3.5   Impact of Rule Induction Algorithm 

Most rule induction algorithms have been designed for maximizing the classification accuracy. 

Recently, some learning algorithms have been proposed that optimize the AUC (Area Under 

the Curve) of a ROC (Receiver Operating Characteristics) curve [6]. The design of a rule 

induction algorithm for optimizing AUC could be an interesting future research objective.  

Rule induction algorithms typically include a parameter which allows the users to trade 

generality for accuracy. When such a parameter is set to favor accuracy, more rules may be 

generated. On the one hand, more rules produce a finer grained ranking, but on the other hand, 

these rule tend to be over-specific. 

4   Empirical Study 

We conducted experiments, using six of the data sets of the UCI repository. The data sets are 

D1: Breast Cancer, D2: Chess (two class scenario), D3: German Credit, D4: Japanese Credit, 

D5: Magic, and D6: Yeast. The sample sets present a wide range of domains and cover a 

comprehensive suite of data characteristics. We have utilized Ripper [5] as our rule induction 

algorithm. For comparison purposes, we have implemented a simple ID3 type of decision tree 

learning with the Laplace correction (section 3.1.1.) as proposed by Provost and Domingos 

[11]. 



The AUC result on each data set was measured via a 10-fold cross validation. Runs with 

three separate groups of rule sets were carried out on identical data sets. The three groups of 

rules represented different levels of simplifications for the generated rule sets (i.e., a larger 

number of more specific and precise rules or a smaller number of more general and overlapping 

rules) and were obtained by changing the Ripper parameter settings. 

Six different scoring methods were used to compute the score of each example. The first 

three are based on the probability estimation with different methods, Max, Average, and 

Probabilistic Sum, for combining the scores of an example covered by more than one rule, as 

describe in Section 3.4. These three methods are denoted as follows. 

 AUC-FR0: Max  

 AUC-FR1: Average 

 AUC-FR2: Probabilistic Sum  

The remaining group of three methods represents the use of the Laplace corrections with three 

score combining methods. They are denoted as: 

 AUC-LC0: Max 

 AUC-LC1: Average 

 AUC-LC2: Probabilistic Sum 

Figure 4 depicts the summary of AUCs for the six different methods. AUCs are the average on 

all six data sets. In the figure, Series1 is the rule set with the more general rules, Series2 is the 

rule set with less general rules, and Series3 is the rule set with the most specific rules. Except 

for FR0, rules of Series2 and Series3 outperformed rules of Series1. Namely, specific rules 

outperformed general rules. This suggests that specific rules are better for ranking than general 

rules, since specific rules are able to produce a finer grained ranking than the general rules. 

However, rules of Series2 and Series3 performed about the same. It is also shown in the figure 

that Probabilistic Sum performed better than Average, which in turn did better than Max. 

Again, this is because Probabilistic Sum and Average produce a finer grained ranking than Max 

and assume that examples covered by multiple rules should be ranked higher. Laplace 

correction achieved about the same performance as the simple probability estimation.  

Tables 1 gives the detailed AUC numbers for each of the six data sets. The R measurement 

represents a ratio of the number of perfect rules (rules that cover no negative examples) to the 

total number of rules in a given rule set.  Here the average value of R is depicted for each of the 

three runs of six data sets. The R measurement is affected by using Ripper’s S parameter which 

simplifies or specializes the generated rule set (i.e., trading off generality for accuracy by the 

degree of hypothesis simplification). When the parameter is set to favor generation of more 

specific rules, more accurate results can be achieved. 

Tables 2 gives the AUC numbers using the decision tree learning with ranking capability for 

each of the six data sets. 

The following is a summary of the observations drawn from the results: 

 The decision tree ranking approach results in a lower AUC performance than the 

rule-based ranking approaches.  

 Specific rules produce higher AUCs than general rules. 

 Probabilistic Sum generates the best AUC results in comparison with Average and 

Max. 

 Simple probability estimation method performs about the same as Laplace correction. 

 Specific rules produce more scores than general rules. 

 AUC correlates and increases with the number of scores. 

 



 
 

Fig 4. Graphical summary of the AUC experimental results 

 

Table 1. Summary of three series of AUC experimental results. 

 

AUC-FR0 AUC-RF1 AUC-FR2 AUC-LC0 AUC-LC1 AUC-LC2

Series1 0.90 0.91 0.91 0.90 0.91 0.91

Series2 0.92 0.93 0.94 0.92 0.93 0.94

Series3 0.90 0.93 0.94 0.92 0.93 0.94
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C

Average AUC (0.84) on 6 UCI 
data sets for the decision 

tree with ranking capability

Dataset AUC-FR0 AUC-RF1 AUC-FR2 AUC-LC0 AUC-LC1 AUC-LC2 

Series 1 R=0.19      

D1 0.98 0.98 0.98 0.98 0.98 0.98 

D2 0.77 0.79 0.79 0.77 0.78 0.79 

D3 0.92 0.92 0.92 0.92 0.92 0.92 

D4 0.82 0.84 0.84 0.82 0.84 0.84 

D5 1.00 1.00 1.00 1.00 1.00 1.00 

D6 0.91 0.91 0.91 0.91 0.91 0.91 

Averages 0.90 0.91 0.91 0.90 0.91 0.91 

Series 2 R=0.25      

D1 0.99 0.99 0.99 0.99 0.99 0.99 

D2 0.84 0.85 0.88 0.83 0.85 0.87 

D3 0.95 0.95 0.96 0.95 0.95 0.96 

D4 0.85 0.88 0.89 0.84 0.87 0.89 

D5 1.00 1.00 1.00 1.00 1.00 1.00 

D6 0.92 0.93 0.93 0.92 0.93 0.93 

Averages 0.92 0.93 0.94 0.92 0.93 0.94 

Series 3 R=0.28      

D1 0.92 0.99 0.99 0.95 0.99 1.00 

D2 0.84 0.85 0.87 0.83 0.85 0.87 

D3 0.96 0.96 0.96 0.95 0.95 0.96 

D4 0.85 0.88 0.89 0.84 0.87 0.89 

D5 0.90 1.00 1.00 1.00 1.00 1.00 

D6 0.93 0.93 0.93 0.93 0.93 0.93 

Averages 0.90 0.93 0.94 0.92 0.93 0.94 

 



Table 2. Summary of AUC experimental results for the decision tree with ranking capability 

D1 0.948736 

D2 0.779182 

D3 0.891147 

D4 0.722007 

D5 0.999982 

D6 0.705955 

Averages 0.84 
 

 

5   Conclusions 

In this paper, we have proposed a framework for ranking with rules. The framework 

introduces three types of rule ranking methods: post analysis of rules, hybrid methods, and 

multiple rule set analysis. We have also proposed three methods: Max, Average, and 

Probabilistic Sum, for combining the scores of multiple rules.  We have studied the impact of 

rule learning bias on the ranking performance. An empirical study has been conducted to 

evaluate the two simplest rule ranking methods, probability estimation with and without 

Laplace correction, the three rule score combining methods, and the impacts of rule 

induction bias. The results have been compared with those reported for a decision tree with 

ranking capability. The comparison shows a lower performance for the decision tree learning 

approach. 

The experimental results clearly indicate that inductive bias has an impact on the 

performance of ranking. It is also shown that Probabilistic Sum and Average perform better 

than Max. It seems that a method that produces more scores usually outperforms a method that 

produces fewer scores. More experiments need to be conducted to verify this claim. 

In future research, we will empirically validate other methods of the framework, specifically 

the ones that use geometric measures. With geometric methods, more scores could be 

produced. It would be interesting to see whether such geometric measures could indeed 

improve the AUC or not. 
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