
Statistical Approach to Ordinal Classification
with Monotonicity Constraints

Wojciech Kotłowski1 and Roman Słowiński1,2

1 Institute of Computing Science, Poznań University of Technology,
60-965 Poznań, Poland

wkotlowski@cs.put.poznan.pl rslowinski@cs.put.poznan.pl
2 Systems Research Institute, Polish Academy of Sciences, 01-447 Warsaw, Poland

Abstract. In the ordinal classification with monotonicity constraints,
it is assumed that the class label of an object does not decrease when
evaluations of this object on considered attributes increase. In this pa-
per, we formulate the problem of ordinal classification with monotonicity
constraints from statistical point of view, by imposing constraints both
on the probability distribution and on the loss function. We propose a
procedure for “monotonizing” the data by relabeling objects, based on
minimization of the empirical risk in the class of all monotone func-
tions. The procedure is then used as a preprocessing tool, improving the
accuracy of the classifiers. We verify these claims in a computational
experiment.

1 Introduction

Utilizing the domain knowledge is of fundamental importance in the learning pro-
cess. In order to generalize, every learning algorithm must be biased, however,
when this bias comes from the domain knowledge, the algorithm has a chance to
generalize better. A common type of knowledge encountered in applications of
machine learning are the statements about orders and about relationships among
these orders. Indeed, although the experts may fail in providing quantitative rela-
tionships between variables of the system under study, they can usually describe
their qualitative characteristic in terms of ordering and monotone dependencies
(e.g., “the higher, the better”), which happen to be the relations that are easiest
to express.

In the problem of ordinal classification (also referred to as ordinal regression),
the purpose is to predict for a given object x ∈ X one of K ordered class
labels (ranks), y ∈ Y = {1, . . . ,K}. It is often assumed that the objects are
described in terms of m attributes, so that, without loss of generality, each object
is represented by a real-valued vector, x = (x1, . . . , xm) ∈ Rm. In this paper we
consider the ordinal classification problem together with the domain knowledge
about the objects expressed by the monotonicity constraints, imposed on X.
Assume the attributes have ordered domains and it follows from the domain
knowledge that a higher value of an object on an attribute, with other values
being fixed, should not decrease its class assignment. We define a partial preorder

relation � in the set of objects X, called dominance relation, such that an object
x dominates x′, x � x′, if xj > x′j for j = 1, . . . ,m. The monotonicity constraints
are then expressed in the following way: for any two objects x, x′ ∈ X, if x � x′,
then object x should be labeled with a class not lower than x′.

As an example, consider the customer satisfaction analysis [1], which aims at
determining customer preferences in order to optimize decisions about strategies
for launching new products or about improving the image of existing products.
The monotonicity constraints are of fundamental importance here. Indeed, con-
sider two customers, A and B, and suppose that the evaluations of a product by
customer A on a set of attributes are better than the evaluations by customer
B. In this case, it is reasonable to expect that also the comprehensive evaluation
of this product (its rank) by customer A is better (or at least not worse) than
the comprehensive evaluation made by customer B.

As another example, consider the problem of house pricing, i.e. classification
of houses with respect to their prices, into one of the following classes: “cheap”,
“moderate”, “expensive”, “very expensive”. The classification is based on the fol-
lowing attributes: lot size, number of bedrooms, garages, whether house contains
air conditioning, basement, etc. [2]. It is apparent that the price of the house
A should not be less than of the house B if, for instance, house A has greater
number of bedrooms and garages than B, and opposite to B, has basement, and
is as good as B on the other attributes.

The problems of ordinal classification with monotonicity constraints are also
referred to as monotone classification problems, and are commonly encountered
in real-life applications, where the ordinal and monotone properties follow from
the domain knowledge, e.g. bankruptcy risk prediction [3], medical diagnosis [4],
house pricing [5], surveys data [6] and many others. Moreover, such problems
are widely considered under a common name multiple criteria sorting within
multiple criteria decision analysis [7].

Since the partial order can be represented by a directed graph, monotone
classification bears resemblance to learning a graph labeling [8]; nevertheless,
the meaning of the arcs in a graph labeling is different from the meaning of
monotonicity constraints. On the other hand, the considered problem is the con-
strained case of ordinal classification. Although ordinal classification receives a
growing attention in machine learning community [9,10,11,12], the monotonicity
constraints are rarely considered. There are only a few methods which take the
monotone nature of data into account; let us mention Dominance-based Rough
Set Approach (DRSA) [7,13,14], monotone classification trees [15,16,17,5], mono-
tone networks [18], instance-based methods [19,6] or isotonic separation [4].
DRSA provides the most comprehensive theory for ordinal classification prob-
lems with monotonicity constraints, based on the rough set approach to knowl-
edge discovery.

Our paper consist of two parts. In the first part, we aim at providing a
statistical framework for ordinal classification with monotonicity constraints.
We show, how such constraints can be expressed by making general assumptions
about the probability distribution. Moreover, we formulate the necessary and

sufficient conditions for the structure of the loss function which ensures the
monotonicity of the Bayes classification function. The analysis suggests that
some loss functions, such as 0-1 loss, are not suitable for monotone classification.

In the second part of the paper, we propose a general method for incorpo-
rating monotonicity constraints into the learning process. The method is called
monotone approximation and is based on relabeling the training objects to re-
move the inconsistencies and “monotonize” the data. This is done by empirical
risk minimization within the class of all monotone functions. We show how our
method can be used as a preprocessing tool in combination with any algorithm
for ordinal classification. The main idea is to apply our method to the original
data, “monotonize” it and pass it to the learning algorithm, in order to improve
both accuracy and readability of the classifier. This approach has been verified
in computational experiment.

2 Problem Statement

The problem of ordinal classification can be stated as a problem of finding the
function f :X → Y , that accurately predicts values of y. The accuracy is mea-
sured in terms of the loss function L(y, f(x)), which is the penalty for predicting
f(x) when the actual value is y. The overall accuracy of the function f is defined
as the expected loss (risk) according to the probability distribution P (x, y) of
data to be predicted:

R(f) = E[L(y, f(x))] (1)

The loss function in the classification problems has the form of a matrix, hence we
denote lyk = L(y, k) where y, k = 1, . . . ,K. We assume that lkk = 0 and lyk > 0
if y 6= k. Moreover, in the ordinal classification the loss should be consistent with
the order between class labels in the sense that the loss should not decrease, as
the predicted value moves away from the true value. Therefore, following [12],
we assume the loss matrix is V-shaped : for k 6 y it holds ly,k−1 > lyk, while for
k > y it holds lyk 6 ly,k+1. Notice that the proposed model is in the spirit of
[20,12] and is different from the previous rank loss formulation found in [9].

A Bayes classification function is a function f∗ minimizing the risk (1). Since
P (x, y) is unknown, f∗ is unknown and the classification function is learned
from a set of n training examples D = {(x1, y1), . . . , (xn, yn)} (training set). In
order to minimize the value of risk (1), the learning procedure usually performs
minimization of empirical risk:

Remp(f) =
1
n

n∑
i=1

L(yi, f(xi)), (2)

which is the value of a loss function on the training set. In the paper, we denote
objects from the training set D by xi or xj , where i, j = 1, . . . , n; any objects
from X are denoted by x or x′.

Stochastic dominance. The monotonicity constraints require that if x � x′ then
x should be assigned a class not lower than x′. In practice, these constraints are
not always satisfied, leading to the situations referred to as inconsistencies. This
suggests that the order relation � does not impose “hard” constraints and the
constraints should rather be defined in a probabilistic setting. Let x, x′ ∈ X be
such that x � x′. Then, the minimal constraint, which should be imposed on
the conditional distribution is the following:

P (y > k|x) > P (y > k|x′), (3)

for each k = 2, . . . ,K. Expression (3) states that the probability of an event
{y > k} grows monotonically with the dominance relation. It is known as (first
order) stochastic dominance [21]. We will say that a probability distribution is
monotonically constrained if it satisfies the stochastic dominance relation (3) for
each x, x′ ∈ X such that x � x′. The stochastic dominance relation is the core of
what we understand by monotonicity constraints. Notice that in [6], stochastic
dominance was also used, but to define the properties of an estimator rather
than the properties of a probabilistic model. In [9], one assumes that stochastic
dominance holds for all x, x′ ∈ X, whereas we assume it is induced by the
dominance relation.

We now prove a simple lemma related to the stochastic dominance, which
will be used later in this paper. The lemma is a basic result in decision theory,
but we give the proof for clarity and completeness.

Lemma 1. Let x � x′ so that P (y|x) stochastically dominates P (y|x′). Let
z:Y → R be a non-increasing random variable. Then it holds:

E[z|x] 6 E[z|x′], (4)

i.e. the expected value of z according to distribution P (y|x) is always smaller
then the expected value of z according to P (y|x′).

Proof. Let us denote pk = P (y = k|x), qk = P (y = k|x′) and zk = z(k). Then
(4) can be rewritten in the following way:

K∑
k=1

pkzk 6
K∑
k=1

qkzk.

Let us denote the cumulative distribution as Pk =
∑k
l=1 pl and Qk =

∑k
l=1 ql (we

assume P0 = Q0 = 0). From the stochastic dominance it follows that Pk 6 Qk
for each k. Then:

K∑
k=1

pkzk =
K∑
k=1

(Pk − Pk−1)zk =
K∑
k=1

Pkzk −
K−1∑
k=0

Pkzk+1 =

= zK +
K−1∑
k=1

Pk(zk − zk+1) 6 zK +
K−1∑
k=1

Qk(zk − zk+1) =
K∑
k=1

qkzk, (5)

where the inequality follows from the fact that zk − zk+1 > 0 for each k.�

3 Monotonicity of the Bayes classification function

Let us call a function f :X → Y monotone if for any x, x′ ∈ X it holds x � x′ →
f(x) > f(x′). Moreover, let us call vector v = (v1, . . . , vn) monotone, if for every
i, j = 1, . . . , n it holds that xi � xj → vi > vj .

In the classification problem, we aim at finding the classifier which is as close
as possible to the Bayes classification function. In other words, the Bayes clas-
sification function is our “target function” which we try to approximate. Thus,
not surprisingly, we require that in the ordinal classification with monotonicity
constraints the Bayes classification function must be monotone3.

However, although the probability distribution is monotonically constrained,
the monotonicity of the Bayes classification function does not always hold. For
instance, the Bayes classification function for 0-1 loss (the mode of the distri-
bution) is not monotone under stochastic dominance assumption. It appears
that some specific constraints must be imposed on the loss function in order to
maintain the monotonicity of the Bayes classification function:

Theorem 1. Let lyk be V-shaped. The Bayes classification function is a mono-
tone function for every monotonically constrained distribution P (x, y) if and only
if the loss function satisfies the following constraints:

ly,k+1 − lyk > ly+1,k+1 − ly+1,k if k > y
ly,k−1 − lyk > ly−1,k−1 − ly−1,k if k < y

(6)

Proof. We prove the “if” part. Suppose conditions (6) hold. Let us define δyk in
the following way:

δyk =
{
lyk − ly,k−1 for k > y,
lyk − ly,k+1 for k < y.

Let P (x, y) be any monotonically constrained probability distribution and let
x, x′ ∈ X be any two points such that x � x′. Let us denote pk = P (y = k|x)
and qk = P (y = k|x′). Let u be a predicted class label. The expected loss for
the prediction u according to the distribution P (y|x) is as follows:

E[L(y, u)|x] =
K∑
y=1

pylyu =
u−1∑
y=1

py

u∑
k=y+1

(lyk− ly,k−1)+
K∑

y=u+1

py

y−1∑
k=u

(lyk− ly,k+1),

or by using δyk:

E[L(y, u)|x] =
u−1∑
y=1

py

u∑
k=y+1

δyk +
K∑

y=u+1

py

y−1∑
k=u

δyk.

3 The Bayes classification function may not be unique, because it is defined only up to
a zero measure set. To avoid this problem, we assume that for every x ∈ X, the Bayes
function returns the class label k with the smallest conditional risk E[L(y, k)|x]; in
case of ties on the conditional risk, the lowest label is always chosen.

Consider ∆(u|x) = E[L(y, u + 1)|x] − E[L(y, u)|x], the difference between the
expected losses for u+ 1 and u:

∆(u|x)=
u∑
y=1

py

u+1∑
k=y+1

δyk +
K∑

y=u+2

py

y−1∑
k=u+1

δyk −
u−1∑
y=1

py

u∑
k=y+1

δyk −
K∑

y=u+1

py

y−1∑
k=u

δyk =

=
u∑
y=1

pyδy,u+1 −
K∑

y=u+1

pyδyu 6
u∑
y=1

qyδy,u+1 −
K∑

y=u+1

qyδyu = ∆(u|x′),

where the inequality comes from Lemma 1, since the function z(1) =
δ1,u+1, . . . , z(u) = δu,u+1, zu+1 = −δu+1,u, . . . , z(K) = −δKu is non-increasing
from the assumptions (6). This means that the difference in expected loss for
any two contiguous class labels u+ 1 and u does not increase as we move from
x to x′. But this means that the difference in expected loss between any class
labels v and u does not increase.

Now, suppose v is a Bayes classification function for x′, i.e.:

v = arg min
k∈Y

E[L(y, k)|x′].

Choose some u < v. We have:

0 > E[L(y, v)|x′]− E[L(y, u)|x′] > E[L(y, v)|x]− E[L(y, u)|x],

which means that u cannot be the Bayes classification function for x. Thus,
Bayes classification function must be monotone.

The “only if” part of the proof is long and quite technical, hence we give
only the sketch of the proof. Suppose that one of the conditions (6) is violated;
without loss of generality, we may assume that the first one is violated, i.e.
ly0k0 − ly0,k0−1 < ly0+1,k0 − ly0+1,k0−1 for some k0 > y0. We shall find some
probability distribution and objects x � x′ such that the Bayes classification
function violates monotonicity condition, i.e. f∗(x) < f∗(x′). However, we can
set P (y = k|x) = 0 for each x ∈ X, for every class label k /∈ {y0, k0, k0 − 1}.
This will effectively eliminate other classes (they never occur in the problem)
so that we end up with three-class problem which is much easier to analyze
than a general K-class problem. The rest of the proof consist in constructing
the distributions P (y|x) and P (y|x′) such that f∗(x) < f∗(x′). �

From Theorem 1 it follows that conditions (6) are necessary and sufficient for
monotonicity of the Bayes classification function. The latter property is desired
in the monotone classification, otherwise there would be no point in minimizing
the risk within the class of monotone functions. Therefore we will call the loss
function satisfying (6) a monotone loss function.

Monotone Bayes classification function and convexity. We investigate the con-
ditions (6) for a popular subclass of the loss functions. Let us call a func-
tion c: Z → R convex 4 if for all i, j ∈ Z and for every λ ∈ [0, 1] such that
4 We denote the set of integers by Z.

λi+ (1− λ)j ∈ Z, we have:

c(iλ+ (1− λ)j) 6 λc(i) + (1− λ)c(j)

The loss function is very often expressed in the form lyk = c(y−k), with c(0) = 0
and c(k) > 0 for k 6= 0. The loss functions of such type are, for instance, 0-1
loss (c(k) = 1k 6=0)5, mean absolute error loss (c(k) = |k|) or squared error loss
(c(k) = k2). Moreover, every binary loss has this form, because it is determined
by two values l12 = c(−1) and l21 = c(1).

Theorem 2. Let lyk = c(y− k) be the V-shaped loss function and K > 3. Then
the Bayes classification function f∗(x) is monotone if and only if c(k) is convex.

Proof. One can show by induction that the function c: Z → R is convex if and
only if for each k ∈ Z it holds:

c(k) 6
c(k − 1) + c(k + 1)

2
. (7)

The conditions (6) can now be expressed as:

c(y − k − 1)− c(y − k) > c(y − k)− c(y − k + 1) if k > y,
c(y − k + 1)− c(y − k) > c(y − k)− c(y − k − 1) if k < y,

which is equivalent (along with condition c(0) 6 c(1)+c(−1)
2 holding for every loss

matrix) to the condition (7).�

Corollary 1. Let lyk = |y − k|p, for p > 0, be the loss function and K > 3.
Then the Bayes classification function is monotone if and only if p > 1.

Corollary 1 explains why 0-1 loss (p → 0) does not lead to the monotone
Bayes classification function under the stochastic dominance assumption, while
absolute error loss (p = 1) and squared-error loss (p = 2) do ensure monotonic-
ity. Those results support our opinion that 0-1 is not a proper loss for ordinal
classification with K > 3, if one assumes stochastic dominance between the con-
ditional distributions (the stochastic dominance assumption is related not only
to the monotonicity constraints – see e.g. [9]). Notice, that for K = 2, all loss
functions are monotone.

Linear loss function. Let us consider a specific class of the loss functions, called
linear loss functions [22], defined as:

lyk =
{
α(k − y) if k > y
(1− α)(y − k) if k 6 y,

(8)

where 0 < α < 1. For α = 1
2 we have an absolute error loss lyk = |k−y| (up to the

proportional constant). The purpose of introducing (8) is to model asymmetric

5 1A is an indicator function equals 1 if A is true, otherwise 0.

1 2 3 4 5

h((1)) h((2)) h((3)) h((4)) h((5))

Y

h((Y))

Fig. 1. Example with K = 5. The function h(k) changes the position of each class
label on the scale.

costs of misclassification: for α > 1
2 , predicting higher class then the actual

class y is more penalized than predicting the lower class; for α < 1
2 we have

the opposite case. Such loss function can be useful e.g. in medicine: consider
classifying patient into classes according to her/his health condition: “good”,
“moderate”, “bad”, “very bad”. Then classifying the patient’s condition to be
better than it really is, will probably be more dangerous to her/his health than
regarding the patient to be in worse condition than the real one.

It is easy to check that the linear loss is a monotone loss function. It is
also known [22], that such loss function is minimized by (1 − α)-quantile of
the conditional distribution6 i.e., by such y1−α that P (y 6 y1−α) > 1 − α and
P (y > y1−α) > α . For α = 1

2 this results in the definition of a median.
One can extend the linear loss in the following way:

lyk =
{
α(h(k)− h(y)) if k > y
(1− α)(h(y)− h(k)) if k 6 y,

(9)

where h(k):Y → R is a strictly increasing function. It can be interpreted as
a “scale changing” function, which positions class labels on the real axis, thus
changing the distances between them. Introducing an arbitrary scale may at first
look like a strong generalization of (8). Surprisingly, an arbitrary scale will not
change anything on the population level:

Theorem 3. The Bayes classification function for the extended linear loss (9)
does not depend on the function h(k). In particular, this implies that Bayes clas-
sification function for extended linear loss is the (1−α)-quantile of the conditional
distribution.

Proof. First notice, that since h(k) is strictly increasing, it has an inverse
h−1:h(Y) → Y . Let y ∈ Y be a random variable according to distribution
P (y|x). Let us define the random variable y′ = h(y). Moreover, for each k ∈ Y
6 We remind that, in general, p-quantile of probability distribution P (x) is defined as

a value xp such that P (x 6 xp) > p and P (x > xp) > 1− p.

let k′ = h(k). Then:

arg min
k

E
[
L(h(y), h(k))|x

]
= h−1

(
arg min

k′
E
[
L(y′, k′)|x

])
, (10)

i.e. minimizing the extended loss (9) is equivalent to first minimizing the expected
loss (8) with random variable y′ and then taking the h−1 inverse of the obtained
minimizer. The Bayes classification function for (8) is y′1−α, the (1−α)-quantile
of distribution P (y′|x). Since P (y′ = k|x) = P (y = h−1(k)|x) for every k =
1, . . . ,K, then we must have y′1−α = h(y1−α). According to (10), the Bayes
classification function for (9) is h−1(y′1−α) = h−1(h(y1−α)) = y1−α.

4 Monotone Approximation

We now propose a general method for incorporating the monotonicity constraints
into the learning process. The method is based on relabeling objects from the
training set in order to remove the inconsistencies and “monotonize” the data.
Let us consider the minimization of the empirical risk (2) within the class of all
monotone functions. This leads to the following problem:

minimize
n∑
i=1

L(yi, di)

subject to xi � xj → di > dj i, j = 1, . . . , n
di ∈ {1, . . . ,K} i = 1, . . . , n. (11)

The problem has already been considered in statistics [23] for absolute error loss;
in logical analysis of data [24] for the binary case, and in the isotonic separation
method [4] for any loss function. Although variables di are integer, the constraint
matrix is totally unimodular [25], so that integer constraints can be relaxed and
the problem can be solved efficiently via the linear programming; moreover, its
dual is the maximum network flow problem [4] and hence can be solved in O(n3).
The analysis of the problem presented in this paper includes only our own results.

Optimal values of variables di can be regarded as new class labels for the
training objects. Thus, the problem can be interpreted as follows: relabel (reas-
sign) the objects to make the dataset monotone such that new class labels are
as close as possible to the original class labels, where the closeness is measured
in terms of the loss functions. The set of new labels will be called monotone
approximation. Notice, that (11) may have more than one optimal solution.

Reduction of the problem size. We are able to reduce the size of the monotone
approximation problem by removing some of the variables from the optimization
process. Let us call an object xi consistent, if for every xj , we have yi > yj
whenever xi � xj , and yi 6 yj whenever xi � xj , i, j = 1, . . . , n. Let us call
the dataset D monotone if every object xi, i = 1, . . . , n, is consistent; this is
equivalent to the statement that vector y = (y1, . . . , yn) is monotone.

For each xi, let us define the lower and the upper class labels, respectively
as:

li = min{yj :xj � xi, j = 1, . . . , n}
ui = max{yj :xj � xi, j = 1, . . . , n}. (12)

It always holds that li 6 yi 6 ui and li = ui if and only if object xi is consistent.
Moreover, for every xi, xj such that xi � xj , we have li > lj and ui > uj . The
lower and upper labels can be used to put constraints on some of the variables
in the monotone approximation:

Theorem 4. Let d̂i, i = 1, . . . , n, be any optimal solution to the problem (11)
with arbitrary monotone loss function. Then we have li 6 d̂i 6 ui.

Proof. Before we prove the theorem, we must first show that the monotone loss
function is always strictly increasing, i.e. lyk > ly,k+1 if k < y, and ly,k−1 < lyk
if k > y. We will show only the first inequality; the second one can be shown
analogously. From (6) we have that for k > y, ly,k+1 − lyk > ly+1,k+1 − ly+1,k.
Repeating this iteratively, we must finally have

ly,k+1 − lyk > ly+2,k+1 − ly+2,k > . . . > lk,k+1 − lkk > 0,

where the last inequality comes from lkk = 0 and lyk > 0 for y 6= k.
Assume we have any optimal solution d̂i, i = 1, . . . , n. Let I be a subset of

those i for which d̂i < li . Similarly, let J be a subset of those i for which d̂i > ui.
Let us introduce the solution d̃i such that d̃i = li for i ∈ I, d̃i = ui for i ∈ J and
d̃i = d̂i otherwise. As the monotone loss function (6) is always strictly increasing
and we know that li 6 yi 6 ui, it follows that d̃i has lower objective value that
d̂i, if any of the sets I or J is nonempty. Indeed, for every i ∈ I and every i ∈ J ,
the label d̃i is surely “closer” than d̂i to the real label yi. Therefore it is enough
to prove that the solution d̃i is feasible. Then, I and J must be empty, because
otherwise it would contradict the optimality of d̂i.

To prove the feasibility of d̃i in the problem (11), we must show that:

xi � xj =⇒ d̃i > d̃j i, j = 1, . . . , n (13)

Notice that for i ∈ I, d̃i > d̂i and for i ∈ J , d̃i < d̂i Choose any xi � xj . First
we consider i ∈ I, then i ∈ J and finally the case i /∈ I ∪ J :

1. Case i ∈ I. Then if j ∈ I, d̃i = li > lj = d̃j . If j /∈ J , d̃i > d̂i > d̂j > d̃j .
2. Case i ∈ J . Then d̃i = ui > uj > d̃j .
3. Case i /∈ I ∪ J . Then if j ∈ I, d̃i > li > lj = d̃j . If j /∈ I, d̃i = d̂i > d̂j > d̃j .

�

Theorem (4) implies that we can remove consistent objects (for which li = ui)
from the optimization process, since we know a priori that d̂i = yi for such
objects. This dramatically reduces the size of the problem: for real-life data we
have found that in most cases more than 80− 90% of objects are removed.

Handling non-uniqueness of the solution. The optimal solution of the problem
(11) may not be unique (and, in fact, is not unique in most cases). For instance,
consider a very simple binary-class example with only two objects x2 � x1, but
y2 = 0 and y1 = 1. Assume 0-1 loss. Then, either x2 can be relabeled to y2 = 1
or x1 to y1 = 0, and both solution has the same cost equal to 1. Thus, the
particular solution found by the algorithm is accidental, which is unwanted and
doubtful from theoretical point of view.

The problem of non-uniqueness of the optimal solution has been consider in
[26,13]. We only report the main results here and refer for the proofs to the cited
papers. Although the optimal solution may not be unique, there always exist
two optimal solutions d̂∗i, and d̂∗i , i = 1, . . . , n, such that d̂∗i is the smallest and
d̂∗i is the greatest optimal solution. In other words, let d̂i, i = 1, . . . , n, be any
optimal solution. Then it holds that:

d̂∗i 6 d̂i 6 d̂
∗
i

for all i = 1, . . . , n. The smallest and the greatest solutions can be found effec-
tively for linear loss function (8). One can show that the smallest solution d̂∗i is
obtained by solving the monotone approximation with the value α increased by
a sufficiently small amount ε. Similarly, the greatest solution d̂∗i is obtained by
decreasing α by ε. One can show that the value ε 6 n−2 is sufficiently small.

Finally, we notice that a modification of the results obtained in [13] will
lead to the conclusion that the monotone approximation is not sensitive to the
choice of the scale function in extended linear loss (9). In other words, monotone
approximation with extended linear loss is the same for every function h(k);
in particular, it is the same as for ordinary linear loss function. This shows an
unusual property of the linear loss function: being independent of the metric
scale. Although linear loss seemingly imposes a distance measure between the
class labels, an arbitrary change of the distance measure leads to the same result.

5 Experimental Results

The monotone approximation can be used to improve the training set by re-
moving inconsistencies, contradicting the domain knowledge. This is done by
relabeling inconsistent objects in a way which is the safest in the probabilis-
tic meaning. It corresponds to the domain knowledge-based error correction (or
outliers detection) method. Our method can be used as a preprocessing tool
in combination with any ordinal classification algorithm, by applying it to the
original data, “monotonizing” all training examples and passing them to the
learning algorithm, in order to improve the accuracy and comprehensibility of
the classifier. We thoroughly investigate the method on the artificial data.

We propose the following algorithm for generating artificial data with mono-
tonically constrained probability distribution. We assume for simplicity that
K = 2 and Y = {0, 1}. Objects x = (x1, . . . , xm) ∈ Rm are generated uniformly
on a cube [0, 1]m, i.e., x ∼ Um(0, 1). The most important characteristic of the

data from the prediction point of view is the underlying “target” function, mod-
eling the Bayes classification function f∗(x). We assume that f∗(x) = 1h(x)>0,
where h(x) is a real-valued function, described below. The noise (non-zero Bayes
risk) is introduced to the model in the following way: the observed label y equals
f∗(x) with probability 1 − γ and equals 1 − f∗(x) with probability γ. In other
words, the noise causes random errors in label assignment with probability γ.
One can easily show that the Bayes risk R∗ = γ. The conditional distribution
made this way is monotonically constrained as long as the function h(x) is mono-
tone.

The target function h(x) has the following form:

h(x) =
T∑
t=1

atrt(x)− θ, (14)

where at is positive and each rt(x) has either of the following forms:

rt(x) =
ms∏
s=1

1xjs >bs rt(x) = −
ms∏
s=1

1xjs 6bs ,

where js ∈ {1, . . . ,m} and bs ∈ [0, 1]. One can show that h(x) is a monotone
function. Moreover, every monotone function can be approximated arbitrarily
close (with respect to an Lp norm) by functions of the form (14). Notice, that
rt(x) have the form of a hyperrectangle.

All the parameters of the model, apart from T , R∗ and θ, are chosen at
random: we set at, bs ∼ U(0, 1); each js is chosen randomly from {1, . . . ,m};
values ms are chosen according to the exponential law P (ms = j) = 2−j . Any of
the two forms of rt(x) is equally likely. Parameter T models the “smoothness”
of the function and is set to 50×m in the experiment. The threshold θ is chosen
so that the prior probabilities of both classes are equal: P (y = 1) = P (y = 0).
The parameters to be changed are: sample size n, dimensionality m and Bayes
risk R∗. We choose n = 1000, m ∈ {4, 6, 8, 10} and R∗ ∈ {0.1, 0.2, 0.3, 0.4}. For
each combination of these parameters we generate 20 models of the form (14).
For each model, we train the method on 10 separate sets of size 1000 and test
on 10 separate sets of the same size.

The problem is binary, so we can use any binary classification algorithm min-
imizing 0-1 loss, since all symmetric loss functions (0-1, absolute error, squared
error, etc.) are equivalent for binary classification and are monotone loss func-
tions, as described in Section 2. We choose C4.5 [27], AdaBoost [28] with C4.5 as
a base learner (20 iterations), logistic regression and RankBoost [11] with stump
as a base learner (100 iterations). Notice that RankBoost is designed to minimize
the rank loss, but can be easily adapted to deal with ordinal classification for
any loss function, as described in [20]. We use 0-1 loss as a measure of accuracy.

Each classifier was learned in two copies, either with or without monotone
approximation (in monotone approximation, we always choose the greatest so-
lution d̂∗i without loss of generality). In other words, one copy of the classifier
was learned on the original data, while another copy – on the monotonized data,

Table 1. Results on the artificial data. For each classifier, two values are shown: the
first is the testing error (in %) when the classifier is trained on the original data (orig),
while the second concerns testing error (in %) with training on the monotonized data
(mon), i.e. with monotone approximation. The significantly higher result is marked
with bold.

Dataset C4.5 AdaBoost Logistic RankBoost
R∗ m orig mon orig mon orig mon orig mon
10% 4 20.7 19.4 20.4 16.7 14.2 14.1 16.8 14.7

6 25.1 24.7 22.5 19.6 14.1 14.0 17.5 16.0
8 28.7 28.4 23.4 22.1 14.5 14.4 18.1 17.3
10 31.6 31.6 24.5 23.8 14.7 14.6 18.6 18.2

20% 4 29.7 27.8 29.7 26.0 23.4 23.2 26.5 24.1
6 33.6 32.5 33.1 29.3 23.8 23.7 27.2 25.3
8 36.0 35.3 34.8 32.5 24.1 23.9 27.6 26.2
10 37.2 37.2 35.8 34.5 24.3 24.1 28.0 27.2

30% 4 38.6 36.0 38.3 34.9 32.9 32.7 35.9 33.3
6 41.2 39.2 40.5 37.7 33.3 33.0 36.5 33.9
8 42.0 41.2 41.3 39.9 33.9 33.4 37.0 34.9
10 43.5 42.9 42.6 41.6 34.1 33.6 37.3 35.9

40% 4 46.5 43.5 46.4 42.9 42.4 41.7 44.7 42.0
6 47.5 45.2 47.4 44.3 43.0 42.0 45.3 42.4
8 47.9 46.1 47.8 45.4 43.4 42.1 45.5 42.9
10 47.8 46.9 47.8 46.6 43.7 42.7 45.6 43.8

with inconsistencies removed. Each classifiers was run on 20 models, For each
model, the average accuracy (0-1 error) over 10 testing sets was calculated for
both copies of the classifier. We then performed a sign test between models to
verify if any of the methods is significantly better. We chose the significance level
α = 0.05, which means that one copy of the classifier must outperform another
copy on at least 15 out of 20 models.

The implementation of RankBoost was taken from [20]. Implementations of
other algorithms were taken from the Weka software [29]. The results of the
experiment are shown in Table 1. They unquestionably show that removing
inconsistencies can only improve the accuracy. The strength of the improvement,
however, depends on the learning algorithm and properties of the dataset. The
highest improvement is gained by the most complex classifiers which can closely
fit to the data, AdaBoost and RankBoost. Removing the inconsistencies may
help to push the learning process in the right direction and avoid overfitting. The
smallest improvement is gained by the logistic regression; this is caused by the
fact that linear classifiers are more stable and “weaker” (in the sense that they
cannot push the training error down to zero) than tree or stump ensembles. This
result is consistent with [30], where it is proven that a linear fit can determine
monotonicity direction for a wide class of probability distributions.

It also follows from the experiment, that the amount of the improvement
increases with increasing Bayes risk, mostly due the fact that monotone approx-
imation works as error correction based on the domain knowledge about the
monotonicity. When the level of noise in the data is high, using the knowledge

Fig. 2. Left chart: test error of RankBoost decreased by Bayes risk as a function of
Bayes risk for m = 6. Right chart: test error of RankBoost as a function of m for Bayes
risk 0.3.

Bayes risk (%)

te
st

 e
rr

or
 −

 B
ay

es
 r

is
k

0 10 20 30 40 50

0.
00

0
0.

05
0

0.
10

0

original
monotonized

m

te
st

 e
rr

o
r

1 3 5 7 9 11 13

0
.3

0
.3

2
5

0
.3

5
0
.3

7
5

0
.4

original

monotonized

about the probability distribution (monotonicity constraints) to relabel the ob-
jects towards Bayes classification function, increases the quality of the dataset.
Notice, that the improvement decreases with the number of attributes m. This
can be explained by observing that the dominance relation becomes sparse in
high dimensional space and only few objects are then relabeled. The relation-
ships mentioned above are shown in greater details in Figure 2 for RankBoost,
with and without monotonizing the data. The left chart shows the loss in accu-
racy compared to the Bayes classification function (test error minus Bayes risk)
as a function of Bayes risk R∗. The improvement on monotone approximation
increases with the R∗ up to R∗ = 0.45; for R∗ = 0.5, surprisingly, both methods
detect that there is no dependency between y and x and equate their risks with
R∗. The right chart shows the influence of the number of attributes m on the
testing error. At first, the improvement on monotone approximation increases
with m, but later, due to the sparseness of the dominance relation it starts to
decrease.

Another issue related to data monotonization is that the classifiers tend to be
more comprehensible when the domain knowledge is incorporated in the learning
process. We leave this problem for further research.

6 Summary

We presented a statistical theory for the problem of ordinal classification in
the presence of monotonicity constraints. Although the constraints follow from
domain knowledge and often appear in the real data, they are rarely taken into
account and were not deeply considered from the theoretical point of view in
machine learning. We considered the problem in its most general formulation,
when the knowledge about the objects is expressed only through the dominance
relation �. We introduced a probabilistic model for monotone classification,
based on the concept of stochastic dominance, and investigated the possible loss
functions in this setting.

We also proposed a general method for incorporating the monotonicity con-
straints into the learning process, called monotone approximation. The method
is based on relabeling the training objects in order to remove inconsistencies
and monotonize the training data, and can be used as a preprocessing tool in
combination with any algorithm for ordinal classification. Our approach was
thoroughly verified on the artificial data and proved to increase the accuracy of
many classifiers. The highest gain in accuracy is achieved when the classifier is
complex and the level of noise (Bayes risk) is high.

References

1. Greco, S., Matarazzo, B., Słowiński, R.: Rough set approach to customer satisfac-
tion analysis. Volume 4259 of LNCS., Springer (2006) 284–295

2. Koop, G.: Analysis of Economic Data. John Wiley and Sons (2000)
3. Greco, S., Matarazzo, B., Słowiński, R.: A new rough set approach to evaluation

of bankruptcy risk. In Zopounidis, C., ed.: Operational Tools in the Management
of Financial Risks. Kluwer Academic Publishers, Dordrecht (1998) 121–136

4. Chandrasekaran, R., Ryu, Y.U., Jacob, V.S., Hong, S.: Isotonic separation. IN-
FORMS Journal on Computing 17(4) (2005) 462–474

5. Potharst, R., Feelders, A.J.: Classification trees for problems with monotonicity
constraints. SIGKDD Explorations 4(1) (2002) 1–10

6. Cao-Van, K., De Baets, B.: An instance-based algorithm for learning rankings. In:
Proceedings of Benelearn. (2004) 15–21

7. Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision
analysis. European Journal of Operational Research 129 (2001) 1–47

8. Agarwal, S.: Ranking on graph data. In: ICML ’06. (2006) 25–32
9. Herbrich, R., Graepel, T., Obermayer, K.: Regression models for ordinal data: A

machine learning approach. Technical report, Technical University of Berlin (1999)
10. Shashua, A., Levin, A.: Ranking with large margin principle: Two approaches.

Advances in Neural Information Processing System 15 (2003)
11. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm

for combining preferences. J. of Machine Learning Research 4 (2003) 933–969
12. Lin, H.T., Li, L.: Ordinal regression by extended binary classifications. Advances

in Neural Information Processing Systems 19 (2007) 865–872
13. Dembczyński, K., Greco, S., Kotłowski, W., Słowiński, R.: Statistical model for

rough set approach to multicriteria classification. In: PKDD ’07. Volume 4702 of
LNCS., Springer (2007) 164–175

14. Greco, S., Matarazzo, B., Słowiński, R.: Rough set based decision support. In:
Search Methodologies: Introductory Tutorials in Optimization and Decision Sup-
port Techniques. Springer (2005) 475–527

15. Ben-David, A.: Monotonicity maintenance in information-theoretic machine learn-
ing algorithms. Machine Learning 19(1) (1995) 29–43

16. Giove, S., Greco, S., Matarazzo, B., Słowiński, R.: Variable consistency monotonic
decision trees. Volume 2475 of LNAI., Springer (2002) 247–254

17. Cao-Van, K., De Baets, B.: Growing decision trees in an ordinal setting. Interna-
tional Journal of Intelligent Systems 18 (2003) 733–750

18. Sill, J.: Monotonic networks. In: Advances in Neural Information Processing
Systems. Volume 10., Denver, USA, The MIT Press (1998) 661–667

19. BenDavid, A., Sterling, L., Pao, Y.H.: Learning and classification of monotonic
ordinal concepts. Computational Intelligence 5(1) (1989) 45–49

20. Lin, H.T., Li, L.: Large-margin thresholded ensembles for ordinal regression: The-
ory and practice. Lecture Notes in Artificial Intelligence 4264 (2006) 319–333

21. Levy, H.: Stochastic Dominance. Kluwer Academic Publishers (1998)
22. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer (1993)
23. Dykstra, R., Hewett, J., Robertson, T.: Nonparametric, isotonic discriminant pro-

cedures. Biometrica 86(2) (1999) 429–438
24. Boros, E., Hammer, P.L., Hooker, J.N.: Boolean regression. Annals of Operations

Research 58(3) (1995)
25. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization. Dover (1998)
26. Dembczyński, K., Greco, S., Kotłowski, W., Słowiński, R.: Optimized general-

ized decision in dominance-based rough set approach. In: RSKT. Volume 4481 of
Lecture Notes in Computer Science. (2007) 118–125

27. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
28. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences 55(1)
(1997) 119–139

29. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd Edition. Morgan Kaufmann, San Francisco (2005)

30. Magdon-Ismail, M., Sill, J.: A linear fit gets the correct monotonicity directions.
Machine Learning 70(1) (2008) 21–43

