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Abstract. HIV is a rapidly evolving virus leading to AIDS, a disease
responsible for an estimated 2 million deaths in 2007. For optimal guid-
ance of a patient’s therapy and for the design of more effective drugs, it
is important to understand how the virus becomes resistant to the cur-
rent drugs and how this understanding can be used to predict therapy
response. However, it is difficult to make a distinction between muta-
tions that are inherited through epidemiological dependency and muta-
tions that are being newly selected by a particular treatment selective
pressure. Several approaches exist to separately model the two processes
responsible for these mutations, but they experience problems when both
processes are simultaneously at work. An integrated approach that takes
into account both processes will lead to an improved understanding of
the resistance development of the virus and the long-term spread of drug
resistance.

1 Introduction

The Human Immunodeficiency Virus (HIV), which causes the Acquired Immun-
odeficiency Syndrome (AIDS), is difficult to treat due to its ability to evolve
rapidly and to accumulate mutations, leading to antiviral resistance to the ad-
ministered drugs. This often involves cross-resistance to other drugs in that class.
To understand the process of resistance development, it is important to distin-
guish between two kinds of mutations. On the one hand, particular mutations
are selected in a particular patient because they make the virus resistant against
the administered drugs, such that patients that receive the same treatment have
a more similar virus. This process is known as drug selective pressure and we
refer to such mutations as drug-related mutations. On the other hand, mutations
can be inherited from the transmission donor, such that patients that infected
each other will have a more similar virus than viruses from unrelated patients.
We call the corresponding mutations polymorphisms.



Given sequential data, there exist several methods to model the two pro-
cesses responsible for these mutations independently. Firstly, data mining meth-
ods can be used to model the dependencies between mutations and the presence
of drugs, which gives an understanding of drug selective pressure [1]. Secondly,
methods that build phylogenetic trees, which show the ancestral relationship
between different viruses, can be used to understand the process of epidemiolog-
ical dependency [2]. However, as both processes happen at the same time and
the difference between drug-related mutations and polymorphisms is not dis-
tinguishable from the sequence information, both kinds of methods experience
problems: (1) differences in prevalence of polymorphisms between treated and
untreated populations will bias the search for drug-related mutations, and (2)
drug-related mutations, which have not been inherited from the transmission
donor, can mislead phylogenetic analysis to cluster similarly treated patients
closer than according to their epidemiological dependence. In this text, we will
present some of the challenges for data mining techniques which build models
from sequential intra-patient HIV sequences.

Discriminating between the two kinds of mutations will lead to more accurate
models: (1) understanding how drug-related mutations give rise to resistance
will lead to better treatments, and (2) a correct phylogenetic analysis will give a
better insight in how the virus spreads over the world and evolves in the host or
in a group of hosts. Although an integrated technique that takes both processes
into account at the same time might be useful for several types of organisms,
our focus is on HIV. Because of its high evolution rate, it is a key example to
illustrate the setting in which intra-patient evolution due to a particular selective
pressure and inter-patient evolution due to either selective pressure or genetic
drift need to be teased apart.

2 Shortcomings of Existing Methods

Now that we have described the biological background of the problem, we turn
to a more technical description. To briefly summarize the preceding: we have
here a problem setting where the observed data are the result of two different
kinds of processes, and where algorithms exist that can identify each one of these
processes from data where the other process is absent, but not from data where
both processes are at work.

In this section we will first cover the available data and we will then briefly
discuss the methods used to model intra-patient evolution due to a particular
selective pressure (in our case drug selective pressure) and inter-patient evolu-
tion. We will show what their assumptions are and how these assumptions are
violated when dealing with data that contain mutations due to both types of
evolution.

2.1 Available Data

Two kinds of data are relevant for this application. By genotypic data we mean
the sequence of nucleotides of one or several proteins that are targeted by the
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drugs. Phenotypic data contain information about the level of resistance of a
virus carrying a particular sequence against one or more drugs. Testing whether a
sequence is associated with phenotypic resistance against a drug is performed by
monitoring the replication rate of a virus carrying that sequence in the presence
of varying amounts of that drug (in vitro phenotype), or by testing the in vivo
level of replicating virus (called viral load) in a patient under treatment of that
drug.

There are two kinds of genotypic data. Longitudinal datasets consist of se-
quence pairs with a baseline and follow-up sequence for a single patient during a
particular treatment. Cross-sectional datasets on the other hand use populations
of unrelated sequences where each population has a specific treatment history.
Cross-sectional datasets are more popular because they are generally more abun-
dant than longitudinal datasets, since longitudinal data require keeping track of a
single patient over time, with its associated privacy issues. A drawback of cross-
sectional datasets is a possible effect of unknown epidemiological dependency
that must be dealt with (see Section 2.2).

Throughout the section we will illustrate the problem using an example orig-
inating from Ramon et al. [3]. Consider a cross-sectional dataset of treated and
untreated sequences consisting of eight nucleotides, given in Table 1. The first
four nucleotides are strongly therapy-related (the wildtype is AACC while the
treated sequence is mostly GGCC), while sites 5-8 evolve randomly.

Table 1. An example of a hypothetical HIV database.

ID sequence date treatment area subtype

S1 AACCCCGA 12-01-97 untreated Africa C

S2 GACCCCGT 24-01-07 untreated Africa C

S3 GGCTGCGT 01-02-02 treated Europe C

S4 AACCACGT 01-02-98 untreated Africa C

S5 GGTTATTC 07-12-02 treated Europe B

S6 AACCATTT 04-12-02 untreated Europe B

S7 GGCTACAT 01-02-02 treated America B

S8 GGTTACTT 01-02-02 treated Europe B

2.2 Methods that Model Intra-Patient Evolution

Different evolutionary and population genetic processes are shaping viral diver-
sity within and between hosts. However, both during inter-host and intra-host
evolution selective forces (both positive and negative) and stochastic forces (ge-
netic drift) are involved in shaping HIV genetic diversity. In this problem state-
ment, we focus on the selective pressure1 that is exerted upon the HIV virus by
administration of antiviral drugs. To investigate this, we have information on

1 Selective pressure is any external cause that changes reproductive success of par-
ticular variants in a population. This selective pressure is called positive, when the
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whether or not a particular drug selective pressure has been active resulting in
a particular sequence during a within-host evolution.

Antiviral drugs inhibit viral replication by blocking the activity of key en-
zymes and proteins. Treatment aims to maximally and durably suppress viral
replication, leading to a decreased number of virus copies in the blood. However,
ongoing replication of virus particles that can escape this suppression allows the
virus population to adapt and select for one or more mutations that reduce its
susceptibility to one or more drugs in the therapy. This ultimately results in ther-
apy failure, determined by a rebound in viral load. Resistance has been described
for every approved drug, and requires from only one to several mutations.

A specified selective pressure can be modeled by data mining methods such as
Bayesian network learning [1], when information of genetic variation in presence
and absence of this particular selective pressure is available. Mutations that
are associated with resistance against a drug may be learned by comparing a
population of sequences from untreated patients with a population of sequences
from patients treated with that drug. A difference in prevalence of a particular
mutation between these two populations may indicate a role in resistance. In
addition, a structured accumulation of mutations has been observed in many
cases, revealing information on drug resistance pathways. Yet, the exact order
and rate are unknown for most of the drugs.

Data mining methods typically assume individuals (i.e. sequences) to be inde-
pendent and identically distributed (i.i.d.), i.e. not connected somehow through
their ancestry. This means that when these populations are not drawn from the
same epidemiology of HIV infection, differences may also reflect epidemiological
dependencies of distinct HIV populations, for example when within a particular
epidemiologically closely related network, a different therapy strategy is used
than in another network while both are included in the analysis. Returning to
the example given in Table 1, the following rules could be learned by an associa-
tion rule miner: “If 7G then 2A”. This rule describes a correlation between some
polymorphism and a drug-related mutation. The main problem here is that a
classical rule learner will not be able to distinguish therapy-related mutations
from polymorphisms without knowledge about the evolution of the population.
In conclusion, the epidemiological relationship between different viruses invali-
dates the independence between different data.

2.3 Methods that model Inter-Patient Evolution

The shape of inter-patient evolution is primarily determined by (selectively) neu-
tral processes. Positive selection is a less potent force among patients, compared
to within a patient. By inter-patient evolution we mean the accumulation of
mutations due to genetic drift or unknown selective pressure (potentially even

variant increases its fitness relative to the other variants in the population, and
negative, when the variant has a decreased fitness. On the other hand, accumula-
tion of genetic variation can also be due to genetic drift, which is the process of
accumulating mutations that occurs entirely due to chance events [2].
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Fig. 1. A phylogenetic tree of actual evolution.

treatment selective pressure) in the viral ancestor before transmission to an in-
fected recipient. Epidemiological relationships between patients can be modeled
by a phylogenetic tree (also called an evolutionary tree). This is a tree showing
the evolutionary relationships among various biological species or other entities
that are believed to have a common ancestor. In a phylogenetic tree, each node
with descendants represents the most recent common ancestor of the descen-
dants, and the edge lengths in some trees correspond to genetic distance, and
thus indirectly to time estimates.

A lot of research has focused on the automated construction of phylogenetic
trees from data e.g., neighbor-joining (an agglomerative clustering algorithm),
maximum likelihood and parsimony methods [2, 4]. The idea behind these meth-
ods is that individuals that strongly resemble each other genetically are probably
closely related, i.e. they have a recent common ancestor.

Phylogenetic tree construction assumes mutations to occur independently,
i.e. it is assumed that an occurrence of mutation m does not increase the proba-
bility of mutation n occurring within a certain time frame. Classical phylogenetic
tree reconstruction algorithms are easily misled when this assumption is wrong.
This can be illustrated in the case where drug selective pressure is present. In
this case, certain specific mutations (e.g., AACC to GGTT at sites 1-4 in our
example) may reoccur frequently, causing different strains of the virus to be-
come more similar again (since they develop the same mutations). This process
is known as convergent evolution. Figure 1 shows an actual tree of evolution
according to our hypothetical example, while Fig. 2 shows a tree that might be
learned by a standard phylogenetic tree learner. In conclusion, phylogenetic tree
reconstruction algorithms tend to give converging strains a more recent common
ancestor than they should.

3 Formal Problem Description

In this section, we will state the problem more formally. First, we will call an
evolutionary operator any function Pev that describes how likely it is to obtain
a particular descendant sequence through evolution given a particular ancestor
sequence, a particular drug treatment and an interval of time.
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Fig. 2. A naively constructed phylogenetic tree.

The problem that we are trying to solve can now be described as follows:

Given:

– the known existence of an (unknown) evolutionary operator P
mut

ev
;

– the known existence of an (unknown) phylogenetic tree Tev , where mutations
happened both according to the evolutionary process described by P

mut

ev
and

according to other evolutionary operators in which we are not interested and
whose existence we do not know. We do have the information along which
branches P

mut

ev
was present or absent;

– a dataset D consisting of the descriptions of the leaves (terminal species) of
Tev ;

Find: Tev and P
mut

ev

4 Related Work

Different methods have been proposed to correct for the confounding effects of
the respective processes in existing modeling methods [1]. In this section, we
explain some of these methods, and we discuss advantages and disadvantages.

A first approach circumvents the problem by using longitudinal data, which
includes multiple time points for a single patient. This excludes influences of dif-
ferent epidemiologies and therefore allows a more accurate identification of mu-
tations associated with resistance. However, this kind of data is hard to obtain. A
second approach involves the restriction of the dataset to one epidemiologically
closely related cluster (such as one subtype). It reduces the confounding effect
of epidemiological dependency, but it does not take into account the smaller but
existing intra-subtype epidemiological dependencies. Moreover, it might be dis-
advantageous to leave out data and given the increasing treatment of patients
infected with different subtypes, single subtype-based studies are considered too
limited. A third approach involves stratification according to HIV subtype in
order to achieve a similar subtype distribution in the datasets. This method also
leaves out part of the data, but offers the advantage of incorporating broad HIV
diversity.
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The idea of using phylogenetic techniques to correct for the confounding ef-
fect of epidemiology is not new. By reconstructing the evolutionary history of
sequences, one may determine whether the observed difference in prevalence of a
mutation is an indication of multiple independent cases of convergent evolution,
occurring at the tips of the phylogenetic tree, and thus most probably a conse-
quence of evolution of resistance, versus an indication of inherited substitutions
occurring at internal branches deeper in the phylogenetic tree. Unfortunately,
as shown in Section 2.3, convergent evolution of resistance itself confounds the
phylogenetic tree estimation [5], but this can initially be remedied by omitting
from the analysis positions which are already known to be under drug selec-
tive pressure (hereby relying on the correctness of the selective pressure model).
This introduces a chicken-and-egg problem, which stresses the need for a method
that learns both the selective pressure model and a phylogenetic tree at the same
time. In other work, the reconstructed evolutionary history can be used to obtain
a more similar (with-in) subtype distribution across the datasets. For example,
this can be done by defining a population of treatment naive sequences by sam-
pling sequences from a larger treatment naive population which are evolutionary
most closely related to the treated population [1, 6].

5 Conclusions

In this problem statement we have pointed out the need for a method that
simultaneously models the two evolutionary mechanisms related to HIV. Ideally,
this method can be trained from cross-sectional data.

Such a method would help to improve the untangling and discovery of re-
sistance mutational pathways in a correct manner, which will eventually lead
to better treatments. Moreover, a correct phylogenetic analysis would provide
insight in how the virus spreads over the world and in a host or group of hosts.
This can for example be useful when investigating the transmission history in a
group of hosts.
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