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Abstract DNA Microarray technology allow us to identify cancer sam-
ples considering the gene expression levels across a collection of related
samples.
Several classifiers such as Support Vector Machines (SVM), k Nearest
Neighbors (k-NN) or Diagonal Linear Discriminant Analysis (DLDA)
have been applied to this problem. However, they are usually based on
Euclidean distances that fail to reflect accurately the sample proximi-
ties. Several classifiers have been extended to work with non-Euclidean
dissimilarities although none outperforms the others because they mis-
classify a different set of patterns.
In this paper, we combine different kind of dissimilarity based classifiers
to reduce the misclassification errors. The diversity among classifiers is
induced considering a set of complementary dissimilarities for three diffe-
rent type of models. The experimental results suggest that the algorithm
proposed helps to improve classifiers based on a single dissimilarity and
a widely used combination strategy such as Bagging.

1 Introduction

DNA Microarray technology allow us to monitor the expression levels of thou-
sands of genes simultaneously across a collection of related samples. This tech-
nology has been applied particularly to the prediction of three different type of
cancer with encouraging results [12].

A large variety of machine learning techniques have been proposed to this
aim such as Support Vector Machines (SVM) [10], k Nearest Neighbors [9] or
Diagonal Linear Discriminant Analysis (DLDA) [9]. However, the algorithms
considered in the literature rely frequently on the use of the Euclidean distance
that fails to reflect accurately the proximities among the sample profiles [8,4].
The classifiers mentioned above have been extended to work with non-Euclidean
dissimilarities [18]. In spite of this, the resulting algorithms misclassify a different
set of patterns and fail to reduce significantly the errors. This can be explained
because each dissimilarity reflects different features of the data and they induce
different type of errors.



Several authors have pointed out that combining non-optimal classifiers can
help to reduce particularly the variance of the predictor [14,20]. In order to
achieve this goal, different versions of the classifier are usually built by sampling
the patterns or the features [6]. Nevertheless, in our application, this kind of
resampling techniques reduce the size of the training set. This may increase the
bias of individual classifiers and the error of the combination [20].

In this paper, we build the diversity of classifiers considering three different
kinds of models such as SVM, k-NN and DLDA. The diversity is increased
considering a set of complementary dissimilarities for each model. The classifiers
induced will take advantage of the whole sample avoiding the bias introduced by
resampling techniques such as Bagging. In order to incorporate non-Euclidean
dissimilarities the base classifiers are modified in an appropriate way. Finally,
the classifiers are aggregated using a voting strategy [14]. The method proposed
has been applied to the prediction of different type of cancer using the gene
expression levels with remarkable results.

This paper is organized as follows. Section 2 introduces the dissimilarities
considered to build the diversity of classifiers. Section 3 comments how the cla-
ssifiers can be extended to work from a dissimilarity matrix. In section 4 we
present our combination strategy. Section 5 illustrates the performance of the
algorithm in the challenging problem of gene expression data analysis. Finally,
section 6 gets conclusions and outlines future research trends.

2 Dissimilarities for gene expression data analysis

An important step in the design of a classifier is the choice of a proper dissimi-
larity that reflects the proximities among the objects. However, the choice of a
good dissimilarity is not an easy task. Each measure reflects different features of
the data and the classifiers induced by the dissimilarities misclassify frequently
a different set of patterns. Therefore, no dissimilarity outperforms the others.
In this section, we comment shortly the main differences among several dissimi-
larities proposed to evaluate the proximity between samples considering the gene
expression levels. For a deeper description and definitions see [8,4,11].

The Euclidean distance evaluates if the gene expression levels differ signifi-
cantly across different samples. An interesting alternative is the cosine dissimila-
rity. This measure will become small when the ratio between the gene expression
levels is similar for the two samples considered. It differs significantly from the
Euclidean distance when the data is not normalized by the L2 norm.
The correlation measure evaluates if the expression levels of genes change simi-
larly in both samples. Correlation based measures tend to group together samples
whose expression levels are linearly related. The correlation differs significantly
from the cosine if the means of the sample profiles are not zero. This measure
is sensitive to outliers. The Spearman rank dissimilarity is less sensitive to out-
liers because it computes a correlation between the ranks of the gene expression



levels. An alternative measure that helps to overcome the problem of outliers is
the Kendall-τ .

Due to the large number of genes, the sample profiles are codified in high di-
mensional and noisy spaces. In this case, the dissimilarities mentioned above are
affected by the ‘curse of dimensionality’ [1,16]. Hence, most of the dissimilarities
become almost constant and the differences among them are lost. To avoid this
problem, it is recommended to reduce the number of features before computing
the dissimilarities.

3 Dissimilarity based classifiers

Classical Support Vector Machines (SVM) [21] and Diagonal Linear Discriminant
Analysis (DLDA) [9] are not able to work directly from a dissimilarity matrix. In
this section, the classical SVM algorithm is extended to work from a dissimilarity
matrix by defining a kernel of dissimilarities. Next, we comment shortly how to
adapt DLDA to work with dissimilarities.

The SVM algorithm looks for a linear hyperplane f(x;w) = wT x + b that
maximizes the margin γ = 2/‖w‖2. γ determines the generalization ability of
the SVM.

The optimization problem can be solved efficiently in dual space and the
discriminant function can be expressed exclusively in terms of Mercer kernels
[21],

f(x) =
∑
αi>0

αiyiK(x, xi) + w0 (1)

Non-Euclidean dissimilarities can be incorporated into the SVM algorithm
by defining a kernel of dissimilarities [18,19]. Next we detail the idea.
Let d be a dissimilarity [7] and R = {p1, . . . , pn} a subset of representatives
drawn from the training set. Define the mapping D(z,R) : F → Rn as:

D(z,R) = [d(z, p1), d(z, p2), . . . , d(z, pn)] (2)

This mapping defines a dissimilarity space where feature i is given by d(., pi).
The set of representatives R determines the dimensionality of the feature space.
The choice of R is equivalent to select a subset of features in the dissimilarity
space. Due to the small number of training samples in our application, we have
considered the whole sample as a representative set. It has been suggested in
the literature that selecting a smaller subset of representatives does not help to
improve the resulting classifier [18].

Once the patterns have been represented in the dissimilarity space, a kernel
of dissimilarities can be defined as:

Kij = 〈D(xi, R), D(xj , R)〉 (3)

where 〈., .〉 denotes the scalar product in the feature space. Thus, for the linear
SVM the kernel matrix is written as K = DDT . This matrix is positive definite



and keeps the nice properties of the optimization problem in the original SVM
algorithm.

The DLDA is a variant of the Linear Discriminant Analysis (LDA) that consi-
ders diagonal and constant covariance matrices along the classes [9]. However,
in order to apply this technique, a vectorial representation of the data should
be obtained. To this aim, we follow the approach of [18]. First, the dissimilari-
ties are embedded into an Euclidean space such that the inter-pattern distances
reflect approximately the original dissimilarity matrix. Next, the test points are
incorporated via a linear algebra operation. Finally, the DLDA is applied con-
sidering the vectorial representation obtained.

4 Combination of dissimilarity based classifiers

In this section, we introduce our ensemble of classifiers to reduce the errors and
comment briefly the related work.

Our method builds the diversity of classifiers considering three different kind
of models such as SVM, k-NN and DLDA. To increase the diversity among cla-
ssifiers, we have considered several dissimilarities introduced in section 2. Each
dissimilarity reflects different features of the data and the resulting classifiers will
produce different errors. Thus, the combination will improve the performance of
classifiers based on a single dissimilarity [6,15]. Besides, the diversity of classifiers
is generated considering the whole training sample. In this way, we do not reduce
the size of the training set which may induce bias in the individual classifiers.
Notice that the combination strategies are not able to reduce the bias of single
classifiers [20].

Figure 1 shows in an intuitive way how the combination of classifiers reduces the
misclassification errors. For instance bold patterns are assigned to the wrong
class by one classifier but using a voting strategy the patterns will be assigned
to the right class.
Hence, our combination algorithm proceeds as follows: First, the set of comple-
mentary dissimilarities introduced in section 2 are computed. As we mentioned
earlier, each classifier incorporates the dissimilarities in a different way. For the
SVM algorithm, the kernel of dissimilarities is computed and the optimization
problem is solved in the usual way. k-NN is able to work directly from a dissi-
milarity matrix but to avoid the ’curse of dimensionality’ and to increase the
diversity among them it is recommended to reduce previously the number of
features. For the DLDA algorithm, the dissimilarities should be embedded in
an Euclidean space via a Multidimensional Scaling algorithm. The ensemble of
classifiers is aggregated by a standard voting strategy [14]. The diagram 1 shows
the steps of the algorithm.

A related technique to combine classifiers is the Bagging [6,3]. This method gene-
rates a diversity of classifiers considering several bootstrap samples as training



Figure 1. Aggregation of classifiers using a voting strategy. Bold patterns are misclas-
sified by a single hyperplane but not by the combination.

Algorithm 1 Aggregation of classifiers based on multiple models and dissimi-
larities.
1: For each measure compute the dissimilarity matrix
2: Compute the kernel of dissimilarities using equation (3) for the SVM algorithm
3: Embed each dissimilarity into an Euclidean space via MDS for DLDA algorithm
4: Train the classifiers for each dissimilarity
5: Combine the different models using a voting strategy
6: Evaluate the ensemble by ten-fold cross-validation.
7: End

sets. Next, the classifiers are aggregated using a voting strategy. Nevertheless
there are three important differences between Bagging and the method pro-
posed in this section.
First, our method generates the diversity of classifiers by considering the whole
sample. Bagging trains each classifier using around 63% of the training set. In
our application the size of the training set is very small and neglecting part of
the patterns may increase the bias of each classifier. It has been suggested in
the literature that Bagging does not help to reduce the bias [20] and so, the
aggregation of classifiers will hardly reduce the misclassification error.
A second advantage of our method is that it is able to work directly from a
dissimilarity matrix.
Finally, the combination of several dissimilarities avoids the problem of choo-
sing a particular dissimilarity for the application we are dealing with. This is a
difficult and time consuming task.

5 Experimental results

In this section, the ensemble of classifiers proposed is applied to the identification
of cancerous samples using Microarray gene expression data.



Three benchmark gene expression datasets have been considered. The first
one consisted of 72 bone marrow samples (47 ALL and 25 AML) obtained from
acute leukemia patients at the time of diagnosis [12]. The RNA from marrow
mononuclear cells was hybridized to high-density oligonucleotide microarrays
produced by Affymetrix and containing 6817 genes. The second dataset con-
sisted of 49 samples from breast tumors [22], 25 classified as positive to estrogen
receptors (ER+) and 24 negative to estrogen receptors (ER-). Those positive
to estrogen receptors require a different treatment. The RNA of breast cancer
cells were hybridized to high-density oligonucleotide microarrays produced by
Affymetrix and containing 7129 genes. Finally the third dataset consists of 40
tumor and 22 normal colon samples, analyzed with an Affymetrix oligonucleotide
array complementary to more than 6,500 human genes. The number of genes was
reduced in the original dataset to 2000 [2].

Due to the large number of genes, samples are codified in a high dimensional
and noisy space. Therefore, the dissimilarities are affected by the ’curse of di-
mensionality’ and the correlation among them becomes large [16]. To avoid this
problem and to increase the diversity among dissimilarities we have reduced the
number of genes using the standard F-statistic [11]. The number of genes consi-
dered for SVM and DLDA are 14% while for k-NN the number of genes kept is
3% because this technique is more sensitive to noise.
The dissimilarities have been computed without normalizing the variables be-
cause as we have mentioned in section 2 this operation may increase the corre-
lation among them.
The algorithm chosen to train the Support Vector Machines is C-SVM. The C
regularization parameter has been set up by ten fold-crossvalidation [17,5]. We
have considered linear kernels in all the experiments because the small size of the
training set in our application favors the overfitting of the data. Consequently
error rates are smaller for linear kernels than for non linear ones.
The number of neighbors for k-NN algorithm is estimated by cross-validation.
Before applying DLDA the dissimilarities should be embedded in an Euclidean
space using a Multidimensional Scaling algorithm.

Table 1. Empirical results for the best single classifier for each technique.

Technique Datasets Error % False negative %

SVM (Correlation) Golub 6.94% 2.77%
SVM (Tau) Breast 6.12% 2.04%
SVM(Correlation) Colon 14.5% 6.45%

K-NN (Tau) Golub 1.38% 1.38%
K-NN(Tau) Breast 8.16% 2.04%
K-NN (Cosine) Colon 12.9% 4.83%

DLDA (Tau) Golub 2.77% 1.38%
DLDA(Spearman) Breast 8.16% 2.04%
DLDA (Euclidean) Colon 11.29% 4.83%



Table 2. Empirical results for the combination of classifiers. The Bagging technique
has been taken as reference.

Technique Datasets Error % False negative %

Golub 2.77% 1.38%
Bagging (SVM) Breast 6.12% 2.04%

Colon 12.9% 4.83%

Golub 5.55% 5.55%
Bagging (k-NN) Breast 14.28% 6.12%

Colon 14.51% 9.67%

Golub 6.94% 4.16%
Bagging (DLDA) Breast 14.28% 2.04%

Colon 11.29% 3.22%

Golub 1.38% 1.38%
Combination Breast 4.08% 2.04%

Colon 11.2% 3.22%

The algorithms have been evaluated considering the global errors and the false
negative errors. Both have been estimated by ten-fold cross-validation which
gives good experimental results for the problem at hand [17].

Table 1 shows the experimental results for the best single classifier for each
technique. Table 2 compares the method proposed with Bagging, introduced in
section 3. Both, Bagging and the best classifiers based on a single dissimilarity
for each model have been taken as a reference.

From the analysis of tables 1 and 2, the following conclusions can be drawn:

– The dissimilarity that minimizes the error depends strongly on the classifier
and on the particular dataset considered. No dissimilarity outperforms the
others for a wide range of models and datasets. Hence the choice of a proper
dissimilarity is not an easy task for human experts.

– The combination strategy proposed improves the misclassification errors of
the best single classifiers. In particular, the ensemble of classifiers improves
significantly the SVM algorithms for the three problems considered. False
negative errors are particularly reduced in Golub and Colon datasets. We
also report that our method improves the best k-NN classifier for Breast
and Colon which are the most complex datasets according to the literature.
Finally, DLDA is also improved.

– The ensemble of classifiers proposed compares favorably with a widely used
combination algorithm such as Bagging. Our algorithm improves often the
errors of the best bagging technique. Besides, the combination strategy pro-
posed performs always as well as the best bagging technique based on a
single dissimilarity. Finally, note that Bagging fails often to reduce the mis-
classification errors of classifiers based on a single dissimilarity.



6 Conclusions and future research trends

In this paper, we have proposed an ensemble of classifiers based on a diversity
of models and dissimilarities. Our approach aims to reduce the misclassification
error of classifiers based solely on a single measure. The algorithm has been
applied to the classification of cancerous samples using gene expression data.

The experimental results suggest that the method proposed improves the
misclassification error of classifiers based on a single dissimilarity. We also report
that our method compares favorably with a widely used combination algorithm
such as Bagging.
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