
Sampling Very Large Databases for Parallel and

Distributed Relational Frequent Pattern

Discovery

Annalisa Appice, Michelangelo Ceci, Antonio Turi, and Donato Malerba

Dipartimento di Informatica, Università degli Studi di Bari
via Orabona, 4 - 70126 Bari - Italy

{appice,ceci,turi,malerba}@di.uniba.it

Abstract. The amount of data stored in relational databases is quickly
growing due to the pervasive presence of sensors. Processing these data in
their original relational form requires the application of (Multi-)Relational
Data Mining algorithms, but most of them are unable to process very
large databases. In this paper we propose an extension of a multi-relational
algorithm for frequent pattern discovery which resorts to a data sampling
strategy and to distributed computation in grid environments in order
to overcome the computational limits of the original serial algorithm.
Discovered patterns are an approximation of the exact solution found by
the serial algorithm. An application to event log mining proves the via-
bility of the proposed extension to large databases without significantly
affecting the quality of extracted patterns.

1 Introduction

The pervasive presence of sensors in real life is driving the recent interest in the
area of ubiquitous computing. The success of prospected technological advance-
ments, however, strongly depends on the actual capacity of newer applications
to exploit all information which can be extracted from the huge amount of data
produced by sensors. This requires improved knowledge discovery methods which
can handle large collections of data which are heterogeneous and naturally mod-
eled by means of several relations of a database.

Studies in (Multi-)Relational Data Mining (MRDM) [5] and Inductive Logic
Programming (ILP) [13] offer a rather complete set of solutions to mine different
forms of patterns and models (e.g., association rules, classification rules, clus-
ters, . . . ) from relational data. A problem with these solutions remains the actual
applicability to very large databases because of the intrinsic computational com-
plexity of the solved problems. In the case of frequent pattern discovery, which
is the main subject of this work, the high complexity also depends on the expo-
nential size of search space [14].

The need of scalable and high performance systems motivates the resort to
parallel and distributed data mining solutions. At the best of our knowledge,
there is no attempt in the literature to parallelize the process of frequent pat-
terns discovery in the multi-relational setting. Previous works propose solutions



to parallelize relational data mining algorithms for the predictive task of classi-
fication. Strategies to parallelize ILP systems and to speed up the learning time
are presented in [3, 6]. However, all proposed solutions work in a shared-memory
architecture and do not permit to have a real advantage in terms of space com-
plexity. Methods proposed to work in a distributed memory architecture [10, 8,
7] have been developed only for the classification task.

In this paper, we tackle the problem of parallelizing and distributing the
relational frequent pattern discovery in order to analyze very large databases.
Transactional data are stored as Datalog atoms in the extensional part of a de-
ductive database, while domain knowledge, if available, is expressed as a normal
logical program which defines the intensional part of the deductive database.
The proposed method, called sG-SPADA, extends the serial algorithm SPADA
[11] developed for multi-relational association rule discovery, and enhances the
distributed algorithm G-SPADA [16]. Both sG-SPADA and its predecessor G-
SPADA discover approximate relational frequent patterns by means of a three
stepped strategy which (i) extracts n subsets from the original database, (ii)
distributes the discovery of locally frequent patterns on separate computation
units and (iii) determine approximate globally frequent patterns from the local
ones.

sG-SPADA enhances G-SPADA along three directions. First, sG-SPADA
works on samples of any size of the original database, while G-SPADA works on
partitions of initial data, with the consequence that the size of each partition is
linked to the number of partitions. Second, sG-SPADA demands the computa-
tion of intensionally defined predicates (saturation step) to each node of the grid,
while G-SPADA performs saturation on the whole database before partitioning,
with the consequence that one node of the grid should be well-provided to per-
form this resource-consuming task. Third, sG-SPADA optimizes G-SPADA data
transmission by providing the computation nodes with only data actually needed
for local pattern mining.

The paper is organized as follows. In the next section the theoretical back-
ground for relational frequent pattern discovery is introduced. The distributed
and parallel algorithm sG-SPADA is described in Section 3, while experimental
results on two event log mining tasks are reported and discussed in Section 4.

2 Relational Frequent Pattern Discovery

The task addressed in this work concerns the discovery of (frequent) relational
patterns which involve properties and relationships between objects represented
by means of several tables of a relational database. WARMR [4] and SPADA[11]
are two ILP systems which address this task. They both represent relational
data à la Datalog [2], a logic programming language with no function symbols
specifically designed to implement deductive databases. Moreover, they both
take into account a domain (or background) knowledge (BK) expressed in Pro-
log. The main difference is that WARMR is not able to mine relational patterns
at multiple levels of granularity since it lacks of mechanisms for dealing properly



with concept hierarchies. When these are available, it is important to take them
into account since association rules involving more abstract objects are better
supported but less precise, while association rules involving more specific objects
present low support but higher confidence values. Hence by efficiently exploring
the patterns space at different levels of abstraction (or granularity) it is possible
to find the right trade-off between these two conflicting criteria.

In this work, we focus on SPADA because the application domain consid-
ered in the experiments, i.e. process mining, allows for the natural definition of
hierarchies on the concepts of actors and activities, which are then used to find
patterns at different levels of granularity. Nevertheless, the extensions reported
in this paper are general enough to be applicable to WARMR as well. The rep-
resentation formalism adopted in SPADA for both input data and discovered
patterns is detailed in the following subsection.

2.1 Representing Relational Data and Patterns

Data stored in different tables of a relational database describe different objects
involved in the phenomenon under study. These objects play different roles,
and it is necessary to distinguish between the set S of reference (or target)
objects, which are the main subject of analysis, and the sets Rk, 1 ≤ k ≤ m, of
task-relevant (or non-target) objects, which are related to the former and can
contribute to account for the variation. A reference object is described not only
by its own attributes (in the target table). It also has an identifier that maps
into bags of related task-relevant objects from different background tables.

In the logic framework adopted by SPADA, a relational database is boiled
down into a deductive database. Properties of both reference and task-relevant
objects are represented in the extensional part DE , while the domain knowledge
is expressed as a normal logic program which defines the intensional part Di.

Example 1. A deductive database D describing process executions, where con-
stants c1 and c2 denote two distinct process executions (reference objects), while
a1, a2, a3, and a4 denote four distinct actions and u1 and u2 two distinct pro-
moters (task-relevant objects). DE includes the ground atoms:

process(c1). process(c2).
activity(c1,a1). activity(c1,a2). activity(c2,a3). activity(c2,a4).
is a(a1,namemaker). is a(a2,workflow). is a(a3,workflow). is a(a4,delete).
time(a1,10). time(a2,25). time(a3,22). time(a4,23).
promoter(a1,paul). promoter(a2,paul). promoter(a3,paul). promoter(a4,mary).
is a(paul,reader). is a(mary ,admin).

while DI is the normal logic program:
before(A1, A2) ← activity(C, A1),activity(C, A2),

time(A1,T1), A16= A2, time(A2,T2), T1<T2,
not(activity(C, A), A6= A1, A 6= A2, time(A,T), T1<T, T<T2)

which entails the following temporal information: before(a1, a2), before(a3, a4 ).



The set of predicates can be refined into four classes. The key predicate iden-
tifies the reference objects (in the Example 1, process is the key predicate). The
property predicates are binary predicates which define the value taken by an at-
tribute of an object (e.g., time). The structural predicates are binary predicates
which relate task-relevant objects (e.g., promoter) as well as reference objects
with task-relevant objects (e.g., activity). The is a predicate defines the types
of objects. For each type, a generalization hierarchy Hk (k = 1, ..,M) is defined.
In Example 1, the following hierarchies can be defined:

[a1 ] → namemaker ; [a2, a3 ] → workflow ; [a4 ] → delete
[namemaker, delete, workflow ] → activity

[mary ] → admin; [paul ] → reader
[admin, reader ] → promoter

The units of analysis D[s], one for each reference object s ∈ S, are subsets
of ground facts in DE defined as follows:

D[s] = is a(R(s)) ∪D[s|R(s)] ∪
⋃

ri∈R(s)

D[ri|s] where:

– R(s) is the set of task-relevant objects directly or indirectly related to s;
– is a(R(s)) is the set of is a atoms which define the types of ri ∈ R(s);
– D[s|R(s)] contains properties of s and relations between s and ri;
– D[ri|s] contains properties of ri and relations (indirectly) relating ri to s.

In the specific application to log analysis, the set of units of analysis is a
partitioning of DE .

Example 2. The unit of analysis D[c1] includes the ground atoms:
is a(a1,namemaker). is a(a2,workflow). is a(paul,reader).
process(c1). activity(c1,a1). activity(c1,a2).
time(a1,10). time(a2,25). promoter(a1,paul). promoter(a2,paul).

This notion of unit of analysis is coherent with the individual-centered rep-
resentation [1] which has both theoretical (PAC-learnability) and computational
advantages (smaller hypothesis space and more efficient search).

The definition of a relational pattern is formulated in the following.

Definition 1. A relational pattern is P is a set of atoms p0(t
1
0), p1(t

1
1, t

2
1),

p2(t
1
2, t

2
2),. . . , pm(t1m, t2m) where p0 is the key predicate, while pi, i = 1, . . . ,m, is

either a structural predicate or a property predicate or an is a predicate.

Each pi is either extensionally or intensionally defined. By assigning a pat-
tern P with an existentially quantified conjunctive formula eqc(P ) obtained by
transforming P into a Datalog query, we can now provide formal definition of
the support of P on D.

Definition 2. A pattern P covers D[s] if D[s] ∪BK logically entails eqc(P ).

Each relational pattern is associated with a parameter s%, which is the per-
centage of units of analysis in D covered by P (support). The minimum support
for frequent relational patterns depends on the granularity level l (1 ≤ l ≤ M)
of task-relevant objects. It is denoted as minsup[l].



Definition 3. A pattern P [s%] at level l is frequent if s ≥ minsup[l] and all
ancestors of P with respect to Hk are frequent at their corresponding levels.

Example 3. Let us consider the deductive database in Example 1 and suppose
that minsup[1] = 80% and minsup[2] = 40%. Then the following frequent pat-
terns are discovered at level 1 and 2 respectively:
process(A), activity(A,B), is a(B,activity), before(B,C), is a(C,activity). [100%]
process(A), activity(A,B), is a(B,namemaker), before(B,C), is a(C,workflow).
[50%].

2.2 Ordering Patterns in the Search Space

SPADA performs both an intra-level search and inter-level search. The intra-
level search is performed in the space of patterns where the is a atoms refer
to objects defined at the same level of generalization hierarchies. This space is
ordered according to the θ-subsumption generality order between patterns.

Definition 4. P1 is more general than P2 under θ-subsumption (P1 �θ P2) if
and only if P1 θ-subsumes P2, that is, a substitution θ exists such that P1θ ⊆ P2.

Example 4. Let us consider the relational patterns:
P1 ≡ is a(B,namemaker)
P2 ≡ is a(B,namemaker) ∧ before(B,C)
P3 ≡ is a(B,namemaker) ∧ before(B,C) ∧ is a(C,workflow)

whose variables are implicitly existentially quantified. Then P1 θ-subsumes P2

(P1 �θ P2) and P2 θ-subsumes P3 (P2 �θ P3) with substitutions θ1 = θ2 = ⊘.

The relation �θ is a quasi-ordering (or preorder) since it is reflexive and tran-
sitive but not antisymmetric. The monotonicity of �θ with respect to support
allows for the application of the level-wise method described in [12].

In the inter-level search, SPADA refines patterns discovered at level l by
descending the generalization hierarchies of one level. Indeed, by definition of
frequent pattern, a necessary condition for pattern P being frequent at level
l + 1 is that an ancestor pattern P ′ at level l exists, such that P ′ is frequent.
The ancestor pattern is obtained by considering more abstract task-relevant
objects (with respect to some generalization hierarchy) than those involved in
P . Therefore, the inter-level search takes advantage of statistics computed at a
level l to prune the search space at level l + 1.

Once frequent patterns are discovered, association rules can be generated.
This step performed by SPADA is out of the scope of this paper.

3 Parallel and Distributed Relational Pattern Discovery

The application of SPADA to very large database is not straightforward [9] since
the high computational cost of search and the usage of in-memory deductive
database do not allow for mining large data. sG-SPADA overcomes computa-
tional limits of SPADA by distributing and (possibly) parallelizing the discovery



of local frequent relational patterns on random-multisampling of the original
database and then deriving an approximation of the set of exact global frequent
patterns (patterns to be discovered on the entire database) from the various sets
of local patterns.

Random multi-sampling is a method to generate n samples with replacement
each of which includes a percentage p of the data in the original database. The
samples generated are not a data partitioning, so even 10 samples with p = 10%
do not generally correspond to the entire database. The choice of multi-sampling,
as an alternative to data partitioning, is motivated by results in [17, 15] which
confirm the intuition that sampling speeds up the mining process by more than
an order of magnitude by reducing I/O costs drastically shrinking the number
of objects to be considered. Moreover, when training data are kept in main
memory as in SPADA, sampling is the only way to make their analysis feasible.
By working on sampled databases, it is possible to distribute the computation
on a Grid and to parallelize the execution of the data mining algorithm. The
problem of discovering spurious local patterns can be mitigated by increasing
the number of samples, so that the set of “approximate” global patterns derived
from local patterns is more likely representative of the set of “exact” global
patterns.

3.1 Relational Data Sampling

In sG-SPADA sampling aims at transforming the original problem of frequent
patterns discovery into several simpler problems analogous to the original. Each
unit of analysis is added to a sample with probability p = 1/m in order to
generate a sample extensional database DESample

of fixed size m. The probability
that a particular reference object is not picked in a set of N units of analysis can
be estimated as (1 − 1/N)nm = (1 − 1/N)n/p. When p = n/N , i.e., m = N/n,
then the probability estimate approximates e−1 for large N (e.g. the case of large
samples) with e = 2.7183 the base of natural logarithms. Since e−1 = 0.368 this
means that even in the case in which we have n samples of N/n transactions,
only 63.2% of units of analysis will be considered. This gives us a criterion to
set the parameter n once the size of a sample is defined, i.e. either m or p are
specified. In particular, when n = N/m = N · p we are sure that approximately
63.2% of units of analysis are considered.

3.2 Distributing Computation on Grid

A sample extensional database DESample
and the intensional database DI may

be shipped along with sG-SPADA to computation nodes on Grid using gLite
middleware. This is done by submitting parametric jobs described in JDL (Job
Description Language) through the CLI (command line interface). Submission
of jobs on Grid is performed in several steps, namely i) authentication, ii) prepa-
ration of the jobs, iii) uploading the sample databases (stage-in), iv) submission
of a relative parametric job, v) checking/waiting results, vi) getting the results
(stage-out).



3.3 Computing Approximate Global Frequent Patterns

The n sets of relational patterns which are (locally) frequent in sample databases
are collected from the corresponding computation nodes of the Grid platform and
then merged in order to approximate the set of patterns which are potentially
frequent on the original database. Local frequent patterns that occur in less than
k (k ≤ n) sets of patterns are filtered out. The test that the same local pattern
occurs in different sets is based on an equivalence test between two patterns P
and Q under θ-subsumption, i.e. P �θ Q and Q �θ P .

For each pattern that is locally frequent on at least k data samples (k-locally
frequent pattern), sG-SPADA derives an approximation of the global support by
averaging the support values of the local patterns. The approximate support of
an n-locally frequent pattern is very close the true support of the same pattern
on the entire dataset.

4 Experimental Results

Experiments are performed by processing both an event log publicly available
on ProM web site1 and an event log provided by THINK3 Inc2.

4.1 ProM Data

ProM database collects 374 instances of processes related to handling of com-
plaints Afschriften in a municipality in The Netherlands. The period under
analysis is from May 4th, 2005 to November 8th, 2005. For each execution,
the database collects 24.5 events on average. Each event describes an activity
and its performer and it is associated with a timestamp. The total number of
activities is 9,174, while the number of distinct promoters is 29. Activities are
classified as complete (1,343), schedule (6,673), resume (178), start (809), sus-
pend (166) and unknown (5). Taxonomic knowledge on activities and promoters
is encoded in two distinct hierarchies, each of which is mapped into three gran-
ularity levels. For each activity, a textual description is registered in the event
log. This description corresponds to the name of the workflow model. In this
experiment, we deal with 14 distinct workflow models. The extensional database
DE includes 37,070 ground atoms. Reference objects are the process executions,
while task-relevant objects are both the activities and the promoters. The in-
tensional database Di includes the definition of the predicates simultaneous and
before which allow to take into account the temporal autocorrelation of events.

simultaneous(A1, A2) ← activity(C, A1), activity(C, A2), A16= A2,
time(A1,T1), time(A2,T2), T1=T2.

before(A1, A2) ← activity(C, A1),activity(C, A2), A16= A2,
time(A1,T1), time(A2,T2), T1<T2,
not(activity(C, A), A6= A1, A 6= A2, time(A,T), T1<T, T<T2).

1 http://is.tm.tue.nl/∼cgunther/dev/prom/
2 http://www.think3.com/en/default.aspx



In this experiment different minimum support thresholds are defined for each
level, such that the higher the level (i.e. the more abstract the task-relevant
objects involved in the pattern), the higher the support (i.e. the more selec-
tive is the discovery process). In particular, we set the following parameters
minsup[1] = 0.25, minsup[2] = 0.1 and max len pat=9. The last parameter de-
fines the maximum number of atoms in a frequent pattern considered by SPADA
during its search. With the thresholds defined above, there are 2,460 relational
patterns which are discovered by mining the entire database without resorting
to any sampling procedure (ExpDB). Some examples of relational patterns dis-
covered at level l = 2 are the following:

P1: process(A), activity(A,B), is a(B,suspend), before(B,C), C6=B, is a(C,resume),

before(C,D), D6=B, D6=C, is a(D,schedule), simultaneous(D,E), E 6=B,

E 6=C, E6=D, is a(E,complete). [#ro=61, supp=16.31%]

P1 describes the execution order between three activities. This pattern is sup-
ported by 61 out of 374 executions (support= 16.31%).

P2: process(A), activity(A,B), is a(B,start), originator(B,C), C6=B, is a(C,a21),

before(B,D), D6=B, D6=C, is a(D,schedule), workflow(B,ag08 GBA afnemer),

workflow(D,ar01 Wacht Archief). [#ro=39, supp=10.42%]

P2 is supported by 39 executions (support=10.42%).

sG-SPADA computation is then distributed on n sample databases which
contain p% units of analysis stored in the original database. Different experi-
ments are performed with n=5 and p=20%, n=10 and p=10%, n=20 and p=5%.
Local multi-level patterns are discovered at each computation unit and approx-
imate global patterns are identified from the local ones by varying k between 1
and n. To evaluate the quality of the approximate global patterns, we consider
two evaluation measures, that is, recall and precision of the approximate global
patterns discovered with respect to the exact patterns.

recall =
#(Expn,p,k∩ExpDB)

#ExpDB
and precision =

#(Expn,p,k∩ExpDB)
#Expn,p,k

.

#Expn,p,k is the number of approximate global patterns produced by sG-SPADA
with n, p and k, while #ExpDB is the number of exact patterns retrieved on
the entire database. Recall and precision results by varying k between 1 and n
are reported in Figure 1. As expected, when k=1 recall is equal to 100%, but
precision is very low. Conversely, recall tends to be 0 when increasing k. We
can observe that the best trade-off in maximizing precision and recall is found
when k ≈ n

2 . For example, when n=10 and p=10% sG-SPADA discovers 2,732
relational patterns with k=5. A deeper analysis of these 2,732 patterns reveals
that sG-SPADA correctly reconstructs 99.67% of frequent patterns directly dis-
covered on entire database, while 10.24% of these approximate global patterns
are not frequent on the entire database.

Finally, for each exact pattern discovered by sG-SPADA (n=10, p=10%), the
differences between the approximated support computed by sG-SPADA (merge
step) and the exact support computed on the entire database are plot in Figure
2. Box plots are drawn by varying k ∈ {1, 5, 10}. We observe that the minimum



(a) (b)

Fig. 1. Percentage of true frequent patterns (a) and false frequent patterns (b) discov-
ered with n=5, p=20%, n=10, p=10% and n=20, p=5% by varying k in [1,20].

Fig. 2. Box plot of differences between the support approximated by sG-SPADA (merge
step) and the real support of each true pattern. sG-SPADA is run with n=10, p=10%
and k=1,5,10.

difference of support values is constant (-3.71; k=1,5,7), while the maximum
difference of support values decreases from 8.37 (k=1) to 6.8 (k=5) and 6.23
(k=10). The mean of differences decreases from 1.52 (k=10) and 1.5 (k=5) to
0.69 (k=10). This confirms that when k approximates n, although the number of
approximate global patterns decreases, approximate patterns are frequent on the
entire database and the estimate of their support is close to the exact support
value with a low approximation error of 0.69% in average.

4.2 THINK3 Data

THINK3 data traces 353,490 process executions of one customer of THINK3.
The period under analysis is from April 7th 2005 to January 10th, 2007 for a
total of 1,035,119 activities and 103 promoters. Activities are classified as ad-
ministrator tools (131), workflow (919052), namemaker (106839), delete (2767),



deleteEnt (2354), prpDelete (471), prpSmartDelete (53), prpModify (34) and
cast (1430). Promoters are classified as user (103), viewer (3) or administrator
(2). Taxonomic knowledge on activities and promoters is encoded in two dis-
tinct hierarchies. For example, “muller” is-a “administrator”, “altendorfer” is-a
“user”, “administrator” is-a “originator” and so on. For each activity a textual
description is registered in the event log, while for each promoter a working group
is defined. In this experiment, we have thirteen distinct descriptions of the ac-
tivities and thirty-three distinct groups of promoters. The extensional database
DE includes 4,374,840 ground facts, while the intensional part DI includes the
definition of the predicate before. Additional predicates are intensionally defined
to group similar activities. For example, the following clauses:

release(X) ← description(X,freigabe).

release(X) ← description(X,freigabe h).

release(X) ← description(X,freigabe j).

release(X) ← description(X,freigabe m).

define the predicate “release” which describe the activity of release (“freigabe”
in German) independently from the release type (H, J or M). Similarly, other
clauses in DI define the predicates pruefung, techaend, cancelled, construction,
ktgprocess, musterbau, nullserie, techniche, tiffprocess, undermodify and workin-
progress which describe an activity.

sG-SPADA is run by randomly extracting n=100 sample databases with
p=1%. The discovery of the local multi-level frequent relational patterns is par-
allelized on 100 nodes. The size of the original database prevents SPADA from
processing units of analysis altogether.

We set the following SPADA’s parameters: minsup[1] = 0.25, minsup[2] =
0.1, minsup[3] = 0.01 and max len path = 14. With the thresholds defined
above, there are no frequent patterns with more than twelve atoms, this means
that in this case study, sGSPADA returns the set of all approximate global
patterns.

Approximate global patterns are reconstructed from the local ones by varying
k from 1 to 100. Their number is reported in Table 1 and, as expected, it decreases
when k increases. The average number of local frequent patterns (at any level)
discovered on each sample is 673.11, while the standard deviation is relatively
small (53.47). As reported in the last column of Table 1, 369 local frequent
patterns (about 54% on average) are common to all samples.

Table 1. Number of global frequent patterns discovered by varying k in [1,100]

k 1 10 20 30 40 50 60 70 80 90 100

#P 1244 1043 820 747 669 619 574 539 498 468 369

For this dataset it was not possible to apply sG-SPADA to the entire database
as done for ProM data. Therefore, statistics on precision and recall could not be
collected. The main goal of this experiment is that of proving the scalability of



the proposed distribute method, even in the presence of very large databases.
However, a careful setting of the two parameters p and n is likely to lead to
good approximations of the set of global frequent patterns, as in the previous
experiments.

5 Conclusions

The inherent complexity of the problems generally solved by MRDM and ILP
methods general prevents their applicability to very large databases, such as
those generated by typical ubiquitous computing applications. In this paper we
have proposed a distributed algorithm for relational frequent pattern discovery.
Results of our experiments on two real databases are promising both in terms
of approximation of the exact set of frequent relational patterns and in terms of
scalability. A crucial point of our proposal is the right choice of the parameter
k, which is the minimum number of local sets where a global patterns must be
locally frequent. As future work, we intend to investigate some methods to auto-
matically determine the optimal k value, since k can be linked to the minimum
support of local patterns (small k values for high minsup values, and high k
values for low minsup values).

Acknowledgments

This work is supported in partial fulfillment of the research objectives of both
“FAR” project “Laboratorio di bioinformatica per la biodiversitá molecolare”
and “TOCAI.it” project “Tecnologie Orientate alla Conoscenza per Aggregazioni
di Imprese in Internet”. The authors wish to thank THINK3 Inc. for having
provided process data used in the experiments.

References

1. H. Blockeel and M. Sebag. Scalability and efficiency in multi-relational data mining.
SIGKDD Explorations, 5(1):17–30, 2003.

2. S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-
Verlag New York, Inc., New York, NY, USA, 1990.

3. L. Dehaspe and L. De Raedt. Parallel inductive logic programming. In Proceed-

ings of the MLnet Familiarization Workshop on Statistics, Machine Learning and

Knowledge Discovery in Databases, 1995.
4. L. Dehaspe and L. De Raedt. Mining association rules in multiple relations. In

ILP 1997, volume 1297, pages 125–132. Springer-Verlag, 1997.
5. S. Džeroski and N. Lavrač. Relational Data Mining. Springer-Verlag, 2001.
6. N. A. Fonseca, F. M. A. Silva, and R. Camacho. Strategies to parallelize ILP

systems. In S. Kramer and B. Pfahringer, editors, ILP, volume 3625 of Lecture

Notes in Computer Science, pages 136–153. Springer, 2005.
7. N. A. Fonseca, F. M. A. Silva, V. S. Costa, and R. Camacho. A pipelined data-

parallel algorithm for ILP. In CLUSTER, pages 1–10. IEEE, 2005.



8. J. Graham, C. D. Page, and A. Kamal. Accelerating the drug design process
through parallel inductive logic programming data mining. In CSB ’03: Proceedings

of the IEEE Computer Society Conference on Bioinformatics, page 400, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

9. W. Klosgen and M. May. Spatial subgroup mining integrated in an object-relational
spatial database. In T. Elomaa, H. Mannila, and H. Toivonen, editors, European

Conference on Principles and Practice of Knowledge Discovery in Databases, vol-
ume 2431 of LNAI, pages 275–286. Springer-Verlag, 2002.

10. S. Konstantopoulos. A data-parallel version of aleph. CoRR, abs/0708.1527, 2007.
11. F. A. Lisi and D. Malerba. Inducing multi-level association rules from multiple

relations. Machine Learning, 55(2):175–210, 2004.
12. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge

discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.
13. S. Muggleton. Inductive Logic Programmings. Academic Press, London, 1992.
14. C. Silvestri and S. Orlando. Distributed approximate mining of frequent patterns.

In SAC ’05: Proceedings of the 2005 ACM symposium on Applied computing, pages
529–536, New York, NY, USA, 2005. ACM.

15. H. Toivonen. Sampling large databases for association rules. In T. M. Vijayaraman,
A. P. Buchmann, C. Mohan, and N. L. Sarda, editors, International Conference

on Very Large Data Bases, pages 134–145. Morgan Kaufman, 1996.
16. A. Turi, A. Appice, M. Ceci, and D. Malerba. A grid-based multi-relational ap-

proach to process mining. In DEXA, 2008.
17. M. J. Zaki, S. Parthasarathy, W. Li, and M. Ogihara. Evaluation of sampling for

data mining of association rules. In RIDE 1997, 1997.


