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Abstract. The goal of this article is to introduce two existing clustering
approaches into the domain of ubiquitous knowledge discovery. First we
demonstrate how horizontal collaborative clustering can be performed in
a ubiquitous environment and discuss the ability of these two clustering
techniques to cope with privacy constraints. Next, we illustrate how a
particle swarm optimization driven version of this clustering algorithm
can be used in KDUbiq research and we introduce a fitness functions
whose objective is to find similar cluster composition across data loca-
tions. Finally, we run an experiment which shows the potential of PSO
driven collaborative clustering in a ubiquitous environment with privacy
issues
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1 Introduction

Nowadays, computing environments and technologies are more and more evolv-
ing towards a mobile, finely distributed, interacting, dynamic environment con-
taining massive amounts of heterogeneous, spatially and temporally distributed
data sources. Some typical examples of such ubiquitous computing environments
are peer-to-peer systems, grid systems and wireless sensor networks. Knowledge
discovery which faces the challenges imposed by these new computing environ-
ments is also called ubiquitous knowledge discovery or KDubiq.

KDubiq research has some characteristic features which set it aside from
traditional knowledge discovery and distributed data mining. Firstly, KDubiq
algorithms have to operate in an environment where both computing power



and data sources can be heavily distributed at a much greater order than in
distributed data mining.

Secondly, due to the distributed nature of the environment, communication
between the different data sources and computing locations is necessary. A KDu-
biq environment typically consists of several computing devices which perform
some local data mining in situ using limited information at hand while commu-
nicating with others.

Thirdly, the computing devices often possess limited computing resources
(e.g. sensor network) thus calling for resource aware data mining algorithms.

Fourthly, since data is distributed across several sources, data mining algo-
rithms must be able to cope with privacy and security issues which prevent data
from being gathered at a centralized repository.

Last but not least, KDubiq algorithms often have to deal with data streams
and must be able to process the data in real-time in contrast to traditional
data mining techniques which perform a batch analysis on centralized data. All
these characteristics have been studied in depth by the Coordination Action
for Ubiquitous Knowledge Discovery and have been reported in the KDubiq
Blueprint [1] which will be available as Springer book by Fall 2008. Readers
who are interested in a more elaborated discussion of these and other features of
KDubiq research may refer to this work. Let us now depict the crucial motivation
behind this work and how it fits into the KDubiq realm.

Motivating Example. A company holds information on a set of potential cus-
tomers and wishes to segment them into different groups which will make it
easier to identify potential opportunities and act appropriately. Other compa-
nies might also hold information on the same set of potential customers and have
a similar need to identify different groups. Obviously, due to privacy, security or
business reasons, these companies are unwilling or even prohibited to exchange
their information. Yet an overall discovery of common patterns through some col-
laboration mechanisms enforced over the companies could be highly profitable in
contrast to a confined discovery of local knowledge structures (clusters). In some
sense, these companies could be regarded as members of a ubiquitous environ-
ment where data and computing power is distributed across the different partners
which are able to communicate with each other. Therefore, they might benefit
from a KDubiq clustering algorithm which allows them to perform the segmen-
tation locally by using local data and actively consider the findings coming from
other companies without violating privacy, security or business constraints.

Contributions and outline. In this article, we will discuss how a particle swarm
optimized horizontal collaborative fuzzy clustering algorithm, which is a slightly
modified version of the algorithm introduced by Falcón et al. [2], matches the
problem sketched in the above example and tackles some of the challenges im-
posed by KDubiq, such as privacy issues and distributed knowledge discovery.
The main goal of this article is to study the potential of this clustering ap-
proach for applications which are KDubiq in the sense of privacy constraints.
Our motivating example does not impose further constraints related to time,



cpu, memory or communication availability. These type of constraints fall be-
yond the scope of this article. However, we do mention some basic ideas how
the presented techniques could be made resource aware in section 2. This article
should be considered as a critical test for the viability of the presented clustering
algorithms in a KDubiq setting with a main focus on privacy constraints.

The next section is devoted to discuss the original collaborative fuzzy clus-
tering algorithm, introduced by Pedrycz [3, 4] and we shall illustrate how the
problem of privacy can be solved. Next, in section 3, we will elaborate on the
determination of the values governing the collaborative scheme between the dif-
ferent computing nodes. Next, we will set up an experiment to compare the
cluster results from a global cluster approach, a local cluster approach with no
collaboration and a local cluster approach with collaboration. Finally, we will
discuss some limitations and directions for future research.

2 Collaborative Fuzzy Clustering

In 2002, Pedrycz [3] introduced a novel clustering algorithm, called Collaborative
Fuzzy Clustering, which intended to reveal the overall structure of distributed
data (i.e. data residing at different repositories) but, at the same time, complying
with the restrictions preventing data sharing. It can be stated that this approach
exhibits significant differences with other existing techniques under the umbrella
of distributed clustering [4]. This clustering approach is an interesting starting
point for a KDubiq clustering algorithm.

Generally speaking, two types of collaborative clustering are envisioned, i.e.
the horizontal mode and the vertical mode. The vertical mode assumes that each
computing location collects and holds information on different objects described
in the same feature space. For example, a network of weblog crawlers, which all
collect the same information from crawled blog sites, could use the vertical col-
laborative clustering to cluster the different blogs into a predetermined number
of groups. The horizontal mode, on the other side, assumes that each location
holds information on the same set of objects but described in different feature
spaces, as is the case with the example from section 1. In this article we will
focus on the horizontal collaborative clustering scheme and we will integrate the
example in the discussion. However, it should be clear that the ideas presented
here can be readily extended to the vertical fashion and other examples.

Assume that each company holds different information on the same set of N
customers and that they have agreed to arrange them into C clusters. The collab-
orative scheme starts off with a local fuzzy FCM cluster analysis performed by
each company [ii] separately on their local data, although any objective-function-
based clustering algorithm can be used. The generic version of the FCM method
was proposed by Dunn [5] and Bezdek [6] in the 1980s, but has undergone sig-
nificant changes over the years. The reader may refer to Hoppner et al. [7] for
a comprehensive reference on this topic. FCM identifies C cluster centers and
assigns each record k (i.e. a customer in our case) with a specific membership
degree uik to cluster i. The membership degrees uik for i = 1, · · · , C are con-



strained to sum to 1. The FCM analysis tries to minimize the following objective
function Q[ii] where dik denotes the distance between case k and cluster center
i and [ii] refers to the company where the local cluster analysis is performed.

Q[ii] =
N∑

k=1

C∑

i=1

u2
ik[ii]d2

ik[ii] (1)

The local analysis provides each company with an initial set of cluster centers
and a N × C partition matrix containing the membership degrees of each case
k to each cluster i. Next, each company will exchange its partition matrix with
the other companies. Because companies only exchange membership degrees,
no private information about the customers is exchanged and consequently no
privacy, security or business constraints are violated. This is indeed one of the
key features of collaborative clustering: the communication between the data
sites is realized at the level of granular information, i.e. partition matrices in the
horizontal mode and cluster prototypes in the vertical one. Once the companies
have received the partition matrices, the true collaborative FCM can be applied,
which minimizes an augmented objective function (cf. eq. 2). This function in-
tegrates the information from the other companies, but uses collaboration links
α[ii, jj] to control the extent of collaboration between each company [ii] and
[jj]. The set of all collaboration links is called the collaboration matrix.

Q∗[ii] = Q[ii] +
P∑

jj=1
jj 6=ii

α[ii, jj]
N∑

k=1

c∑

i=1

(uik[ii]− uik[jj])2dik[ii] (2)

With this new objective function, each company will get a new set of cluster
centers and a new partition matrix. Once again, the new partition matrices will
be exchanged and each company will minimize the augmented objective function
again. These steps are repeated until some termination criterion is reached, which
relies on the changes to the partition matrices obtained in successive iterations
of the clustering method. Algorithm 2 displays the breakdown of the horizontal
collaborative clustering scheme.

Algorithm 1 The horizontal collaborative clustering scheme
1: for each data location [ii] do
2: Perform standard FCM clustering, minimizing objective function Q[ii]
3: end for
4: repeat
5: Exchange the current partition matrices between the data locations
6: for each data location [ii] do
7: Run the collaborative FCM clustering, minimizing Q∗[ii]
8: end for
9: until some termination criterion is reached



Besides offering a distributed clustering algorithm which tackles privacy is-
sues, the horizontal collaborative clustering algorithm can also be made resource-
aware, which is often an issue in KDubiq research. This can be realized through
the collaboration matrix, which determines the level of collaboration between
two companies. If we take a look at the augmented objective function Q∗[ii], we
can see that it adds penalties when membership degrees differ across companies.
These penalties realize the collaboration effect, but also increase the complexity
of the clustering algorithm which demands more computing resources. However,
if the collaboration link between two companies [ii] and [jj] is set to zero, no
penalties are added for discrepancies in membership degrees between these two
companies, which reduces complexity and computing demands. In the most ex-
treme case, an entire row of the collaboration matrix could be set to zero if
company [ii] has very low computing resources. This would imply that company
[ii] doesn’t use the information from the other companies at all and performs a
classic local FCM cluster analysis. Of course, this would also eliminate the col-
laboration effect for this company. A possible approach to make the technique
resource-aware could be to set the lowest collaboration links to zero if the algo-
rithm demands too much from the computing location. Another option could be
to exchange as less information as possible, i.e. not to pass the whole partition
matrix but a more limited subset of information. This would eventually lead to
another formulation of the collaborative clustering scheme which is beyond the
scope of this article.

3 Optimizing the Collaboration Matrix

Determining the collaboration links can be done based on expert knowledge.
Since the collaboration links control the effect of collaboration between two com-
panies (data locations), a company expert could choose which companies they
want to cooperate with and to what extent. However, this can still be a difficult
task which could also lead to unbalanced results, i.e. there is no guarantee that
collaboration will yield a meaningful result no matter how strong the connection
between two companies might be.

In their work [2], Falcón et al. provided a way to learn the optimal collab-
oration matrix during the clustering analysis by applying the evolutionary op-
timization technique of Particle Swarm Optimization (PSO). We will use their
approach while modifying the fitness function of the PSO for learning the optimal
collaboration matrix. In their approach, the objective was to achieve maximum
collaboration measured in terms of the partition matrices stemming from the col-
laboration, while our approach will focus on finding similar cluster compositions
across companies. We prefer the latter approach because we want to mimic the
situation where all companies would gather the entire information provided by
the multiple feature spaces under discussion and perform a single global cluster
analysis, which is however impossible due to aforementioned reasons.

PSO is an evolutionary optimization technique developed by Kennedy and
Eberhart [8], inspired by the swarming behaviour of bird flocks and fish schools.



The optimization algorithm first initializes Z particles xz, each particle repre-
senting a possible solution to the optimization problem. Next, the particles start
to fly through the solution space and at each time interval t, the fitness of the
solution is evaluated by means of a fitness function. During their flight, each
particle remembers its own best position pz. The direction of a particle in the
solution space is influenced by the particle’s current location xz(t), the particle’s
current velocity vz(t), the particle’s own best position pz and the global best po-
sition among all particles pg. The particle’s new position xz(t + 1) is calculated
by eq. 3 and eq. 4

vz(t + 1) = wvz(t) + c1r1(pz − xz(t)) + c2r2(pg − xz(t)) (3)

xz(t + 1) = xz(t) + vz(t + 1) (4)

where w is the inertia weight and c1, c2 are the acceleration constants draw-
ing the particle toward the local and global best locations, respectively. The
stochastic component of the PSO meta-heuristic is given by r1 and r2, which
stand for two uniformly distributed random numbers. All particles keep moving
in the solution space until some criterion is met. The global best position at the
end is the solution to the optimization problem. For a broader insight about this
widespread optimization technique, refer to [9].

In our particular case, a single particle will represent an entire collaboration
matrix and the flight of the particles represents the search for a collaboration
matrix which optimizes the similarity of the cluster compositions across data
locations. To achieve such optimization, we formulate an appropriate fitness
function which represents the dissimilarity in cluster composition across data
locations. The goal of the PSO algorithm will be to minimize this function.

We redefine a cluster Ci[ii] as a set of membership degrees {u1i[ii], · · · , uNi[ii]}.
Now we can express the dissimilarity between cluster i from data site [ii] and
cluster j from data site [jj] as follows:

d(Ci[ii], Cj [jj]) =
1
N

N∑

k=1

|uik[ii]− ujk[jj]|. (5)

This dissimilarity measure will become zero, which is the lower bound, when
all patterns belong to both clusters with the same degree. On the other hand,
it will become 1, which is the upper bound, when both clusters are crisp and
don’t have any pattern in common. Furthermore, this measure is also symmetric.
Next, to measure the dissimilarity between the entire cluster solution of data site
[ii] and data site [jj], we compare each cluster of data site [ii] with each cluster
of data site [jj] and only consider the smallest dissimilarity for each cluster
(cf. eq. 6). Note that this measure equals to 0 when both cluster solutions are
identical.

D[ii, jj] =
1
c

c∑

i=1

c

Min
j=1

[d(Ci[ii], Cj [jj])] (6)



The final fitness measure, which we will term as ρ, can be envisioned as the
mean dissimilarity of the cluster solutions across all data sites.

ρ =
2

P (P − 1)

P∑

ii=1

P∑

jj>i

D[ii, jj] (7)

Given this fitness measure, we can use PSO to determine the optimal set
of collaboration links. In our setting of KDubiq clustering, this implies that
aside from the data locations, which we will call data nodes, we will need a
computing location which performs the PSO algorithm. This location will act
as the coordination node. It should be noted that the coordination node can
be the same physical location as a specific data node, but this isn’t necessary.
Algorithm 2 shows how the collaborative clustering scheme and the particle
swarm optimization can be integrated to automate the determination of the
collaboration links.

Algorithm 2 The horizontal collaborative clustering scheme
1: Initialize Z particles xz

2: repeat
3: for each particle xz do
4: Perform alg. 1 with the collaboration matrix represented by xz (data nodes)
5: Send the partition matrices to the coordination node
6: Calculate the fitness function ρ (coordination node)
7: Calculate the new position xz(t + 1) (coordination node)
8: Update pz (coordination node)
9: end for

10: Update pg (coordination node)
11: until some termination criterion is reached (coordination node)
12: Send the optimal collaboration links to the data nodes
13: Perform alg. 1 with the optimal collaboration matrix (data nodes)

4 Empirical Results

4.1 Data Description

The data used for our experiment comes from a customer satisfaction survey
performed in the family entertainment sector. Customers were asked to rate the
performance of several attributes of 4 different products from the same company
on scales from 1 [Low] to 10 [High]. The customers also had to indicate how
satisfied they were with each product as a whole on a scale from 1 [Low] to
10 [High]. In total, 666 respondents who bought all 4 products completed the
survey entirely and were retained for our experiment. Table 1 shows the number
of attributes for each product. Although all products were sold by the same



company, the data could also reflect 4 companies selling a single product to the
same customer population. In the remainder of this article, we will assume the
latter situation.

Table 1. Attribute Dimensions.

Attribute dimension Number of attributes

Product A 7
Product B 4
Product C 6
Product D 3

4.2 Experiment and Discussion

If no privacy or security issues exist and all four companies are willing to ex-
change private customer information, they could collect all their customer data
and use this to segment the customer population into different groups. We shall
call this approach the global clustering approach (GC). However, companies often
don’t want to share private customer information or privacy constraints forbid
to do so. Therefore, the common situation is that companies only use their own
limited data to perform a customer segmentation. We shall call this situation
the local clustering approach with no collaboration (LC). In general, we assume
that the global clustering approach provides better results since the clustering
algorithm has access to more information about the customers. The KDubiq
approach discussed in this article tries to overcome the limitations of the LC
approach, without actually exchanging private customer information. We shall
call this approach the local clustering approach, with collaboration (LCC).

The purpose of the experiment is to analyze the differences between the
clusters found by all three approaches. Given the context of customer satisfac-
tion and the fact that all attributes measure performance or satisfaction from
a “low-to-high” scale, we considered a 2-cluster model. For the GC approach
we collected all data from the four companies and performed a standard FCM
cluster analysis. For the LC approach, we performed four different standard
FCM cluster analyses, one per company, using only the data available to that
company. For the LCC approach, we performed a PSO-driven horizontal col-
laborative clustering approach with the following parameters: 50 particles, 200
iterations, c1 = c2 = 2.0, inertia weight dynamically varied from 1.4 to 0.4.
Once the PSO-driven horizontal collaborative clustering has found the optimal
collaboration matrix, it performs a separate clustering analysis per company and
collaboration between the companies is realized by exchanging only membership
degrees in the form of partition matrices.

Figures 1, 2, 3 and 4 show the profiles for all the cluster centers found by the
three approaches. A profile shows the value of a cluster center for each attribute
and gives an idea about the distance between the cluster centers. All four profiles



show that each cluster solution contains two clusters which can be identified as
a high satisfaction/performance group and a medium satisfaction/performance
group of customers. If we focus on company A, we see that the cluster centers
are more separated in the LC approach than in the GC approach. We can also
see that the LCC approach provides cluster centers which approximate the GC
approach solution much better. This pattern can be found for all four companies.
This implies that if companies would share their private information, they would
find more subtle customer cluster due to the additional customer information.
These results also show that the LCC approach can approximate the GC solution
well without exchanging private customer information.
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Fig. 1. Company A: Cluster Profiles (Average score per attribute for each cluster for
each clustering approach)

Collecting all data as in the GC solution will not only affect the cluster
centers, but also the assignment of customers to these clusters. In all three ap-
proaches, a fuzzy clustering technique was used and customers were assigned to
the cluster for which they had a membership degree greater than 0.5. If a cus-
tomer had a membership degree of exactly 0.5 for both clusters, the customer
was not assigned and marked as undecided. Once again, we start from the idea
that the GC approach must offer better results than the local approaches because
it has access to more data and information about the customers. Therefore, we
will study to which extent the cluster assignment of the LC and LCC approach
approximates the cluster assignment of the GC approach. In total, the GC ap-
proach assigned 656 out of 666 customers (10 were left undecided). If company
A uses the LC approach, 21.5% of the 656 customers were assigned to a different
cluster compared with the GC approach. With the LCC approach, only 13.3%
of the customers were assigned differently. The same pattern was confirmed for
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Fig. 2. Company B: Cluster Profiles (Average score per attribute for each cluster for
each clustering approach)
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Fig. 3. Company C: Cluster Profiles (Average score per attribute for each cluster for
each clustering approach)
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Fig. 4. Company D: Cluster Profiles (Average score per attribute for each cluster for
each clustering approach)

the other companies. One can also see that the percentage customers assigned
differently for the LCC approach compared with the GC approach, is the same
for all four companies. This is caused by the fitness function used during the
PSO approach, which tries to come up with the same cluster composition for
each data site. These numbers indicate that this goal is well achieved. These re-
sults also indicate that companies could achieve very similar cluster composition
compared with the results from the GC approach without exchanging private
customer information by using the LCC approach.

Table 2. Percentage customers assigned differently compared to GC approach.

A B C D

LCNC 21.5% 22.3% 19.4% 23.5%
LCWC 13.3% 13.3% 13.3% 13.3%

5 Conclusions and Future Research

In this article, we have presented two existing clustering algorithms to the KDu-
biq community, i.e. horizontal collaborative clustering and PSO driven collabora-
tive clustering. Both techniques address some typical issues in KDubiq research,
such as privacy constraints and distributed computing. Our experiments illus-
trate that PSO driven collaborative clustering (LCC) benefits from exchanging
information coded as partition matrices with other data sites. It resembles global



clustering (GC), which collects all information from all data sites prior to a non-
distributed clustering approach, much better than traditional local clustering
(LC), which only uses the information available at the specific data site. In con-
clusion, LCC produces the same meaningful results as GC without violating
privacy or security restrictions.

Although the current results provide promising perspectives, future research
about this clustering approach in KDubiq environments is needed. Firstly, it
is recommended that the analyses are executed on data coming from true dif-
ferent companies, in contrast to our experiment where we simulate this type
of environment. However, the current setup of the algorithm assumes that the
data from each company relate to the same set of customers. In some situa-
tions, this assumption might be too restrictive and future research on how to
overcome this limitation is needed. Secondly, now that the results in this paper
have shown that this approach works, a benchmark against other distributed
clustering approaches which preserve privacy is recommended.

Overall, the collaborative clustering algorithms are very suitable for appli-
cations in KDubiq environments, but future research remains necessary. The
authors hope that this article can motivate and convince other researchers to
explore the use of (PSO driven) collaborative clustering techniques in KDubiq
environments.
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