
Parallelization of R-programs with GridR in
a GPS-trajectory mining application

Dennis Wegener, Dirk Hecker, Christine Körner, Michael May
and Michael Mock

Fraunhofer Institute Intelligent Analysis and Information Systems

Schloss Birlinghoven, 53754 St. Augustin, Germany
{dennis.wegener, dirk.hecker, christine.koerner, michael.may, michael.mock}

@iais.fraunhofer.de

Abstract. In this paper, we show how computing intensive R-applications can
be parallelized in a grid environment using GridR, our tool for the seamless
integration of R-programs in grid environments. We apply the GridR
parallelization in a GPS-trajectory mining application that calculates the reach
and gross contacts of outdoor poster advertisements and demands for
scalability. The application provides the foundation for price calculations for all
outdoor advertisement throughout Germany. In our approach to parallelization,
users are free to submit sequential or parallel R-programs to the grid or directly
to cluster-based parallel execution environments. The execution is mapped
transparently to the chosen execution environment in such a way that neither
the user nor the R-programmer of the data mining algorithm is affected. We
present the overall approach to the parallelization of R-applications and the
performance results achieved with the GPS-trajectory mining application.

Keywords: Cluster Computing, R statistical language, parallelization, grid,
GridR, GPS, spatio-temporal data mining

1 Introduction

Ubiquitous Knowledge Discovery investigates learning in mobile and distributed
environments. To do so, we need to utilize infrastructures that support distributed data
mining tasks in a flexible manner. Sensor networks, peer-to-peer networks, grid
computing are examples of such infrastructures. In this paper we investigate a highly
flexible tool for distributing and parallelizing data mining applications in grid
environments using the R language for statistical computing. We investigate its
usefulness in a specific application setting: track mining from GPS data; the tool itself
however is completely generic.

The analysis of spatio-temporal data is a broad field of research. During the past
years, several GPS studies have been conducted in transportation research to analyze
the travel behavior of persons. Most of the studies are based on GPS data collected
within a single city with up to a few hundred test persons [1, 2]. A rather large GPS

study has been conducted in Switzerland, including about 10,000 test persons from 12
conurbations [3].

The data mining application described in this paper computes the reach and gross
contacts of outdoor poster campaigns based on GPS-tracks of a set of test persons.
Reach is defined as the percentage of a population exposed to a campaign within a
certain period of time (e.g., a week). Gross contacts are the total number of contacts a
campaign achieves. Both measures serve as common currency for comparing the
performance of campaigns in the advertisement business. Typical users are located in
marketing departments of a production company and want to evaluate the reach of
poster campaigns for outdoor advertisements. The data on which the evaluation takes
place was collected in a nationwide study in Germany and consists of trajectories that
reflect the outdoor movements of a representative sample of 30,000 test persons. The
data is stored in a central database in our computing cluster, in which the computation
is executed.

The considered GPS-trajectory mining application is written in the statistical
language R [4]. The algorithm makes use of simulation and advanced statistics and is
extremely computing intensive. The scenario used for evaluation comprises 12
German cities and would have taken roughly a year to compute on a conventional PC,
what is not acceptable for the application scenario. In addition, taking into account
that calculations might be performed nation-wide for each city in the country,
scalability is a key issue for this application. In conclusion, the application must be
executed in parallel on a high-performance computing cluster, thus raising the
demand for a parallelization and a remote access to computing clusters for R-
programs. We have developed a grid-based analysis tool called GridR [5], which
provides the user of R with a convenient access to distributed computing resources. In
this paper, we show how this access can be extended to R-programs that run in
parallel either on a computing cluster or on other computing resources made available
through the grid. We show techniques to parallelize R-applications with GridR either
on the client-side or on the server side. Furthermore, the R-program for parallelization
and the R-program of the original data-mining algorithm can be separated, such that
the programmer of the data-mining algorithm is not affected. In the considered GPS-
trajectory mining application, the execution of the R-application is mapped
transparently onto a computing cluster which itself is managed by the Condor system
[6]. We present and discuss the performance gain of the parallelization and show that
the parallelization of the computation achieves acceptable response times, even if
each of the parallel tasks requires access to a central database. In addition, we present
the performance results of the poster reach estimation for different poster campaigns.

The remainder of the paper is organized as follows: section 2 presents the
application scenario. The GridR tool and its parallelization capabilities are presented
in section 3, and section 4 reports on the parallelization of the GPS-trajectory mining
application. Related work is presented in section 5. We conclude with a short
summary in section 6.

2 The AGMA Application

In Germany, the outdoor advertisement industry records a yearly turnover of more
than 800 million euros. The Arbeitsgemeinschaft Media-Analyse e.V. (ag.ma) – a
joint industry committee of around 250 principal companies of the advertising and
media industry in Germany – authorized the AGMA project, which provides the
foundation for price calculations in outdoor advertisement throughout Germany. In
2006/07 the ag.ma commissioned a nationwide survey about mobile behavior and
appointed Fraunhofer IAIS to calculate the reach and gross contacts of poster
networks [7].

Fig. 1 on the left shows a campaign of 321 billboards on arterial roads in Cologne.
The right hand side displays the development of reach over a period of seven days.
Reach is a time-dependent measure about the publicity of a poster network. It states
the percentage of people which see at least one poster of the campaign within a given
period of time, e.g. one week. The campaign reaches about 50 percent of the Cologne
population on the first day, after one week about 90 percent of the population have
seen a poster of the campaign.

Fig. 1. Reach of a poster network in Cologne

The basic input data of the AGMA application are trajectories and poster information.
Nationwide, the daily movements of about 30,000 people have been surveyed using
GPS technology and telephone interviews. This data amounts to about 21 million
tuples where each tuple represents a section of a trajectory which has been mapped to
the street network. Poster information indicating geographic location, type and
visibility is available for approximately 230,000 posters. In order to determine reach
and gross contacts, the intersections of a given poster network and the trajectory data
have to be calculated. However, the number of test persons is rather small compared
to the whole population of Germany and the trajectories do not span the full street
network. Therefore, we introduce variance to the data by performing a geographically
restricted simulation of the trajectories. The resulting simulated trajectories serve as
basis for computation of reach and gross contacts. However, the trajectories suffer

from incompleteness in terms of missing measurements due to defective GPS devices
or the forgetfulness of test person, which easily interrupt the series of measurement
days. These deficiencies are treated in the modelling step by applying the Kaplan-
Meier survival analysis technique [8]. Details of the analysis technique itself are not
subject of this paper but are under preparation for a separate publication. A detailed
documentation of the study is already available at the ag.ma website1 (in German).

Our computations are implemented using the statistical software R, as R directly
supports statistical analysis including the Kaplan-Meier method. At the beginning, the
script retrieves input data by triggering several database queries that read a (random)
network of posters and the test persons’ movement data. Afterwards, a 100-fold
simulation of trajectories is performed, and reach and gross contacts are calculated. In
previous tests, we determined a number of 100 simulations to achieve stable results.
Finally, the results are stored in a text file.

In addition to calculations regarding a particular poster campaign, the advertising
industry is also interested in mean network ratings. This requires the repeated
execution of the script with randomly selected poster campaigns of specified size, and
subsequent averaging of results. Depending on the size of the poster network, stable
results can be achieved by using 30-100 repetitions.
The input parameters allow for a variety of combinations. For instance, the
geographic location of a poster network can span from a single city up to
combinations of cities to federal states or whole Germany. Also, the target population
can vary. For instance, it is interesting to know the amount of contacts contributed by
people living in the surrounding area of a large city. Other parameters are the size of
the campaign and the poster type. Depending on parameterization, the execution time
to calculate reach and gross contacts of a single campaign varies between several
minutes and a few days. Thereby, the main influence factors are the number of target
test persons and the size of the poster network. Clearly, the large number of
parameterizations prohibits advance computation of all possible settings, so that
computations must be performed on demand. This requires an execution in reasonable
time, which applies in particular to mean computations, where 30-100 repetitions of a
setting must be executed. Therefore, scalability plays a crucial role in the application.

3 Parallel processing with GridR

3.1 GridR

In previous work, we developed GridR [5] as analysis tool based on the statistical
environment R [4] that allows using the collection of methodologies available as R
packages in a grid environment. The R language is a de facto standard for statistical
research and is used by many applied statistics projects as it provides a broad range of
state-of-the-art statistical and graphical techniques as well as advanced data mining
methods. In GridR, the R environment has been grid enabled in a way that it allows to
be used as user interface for accessing grid resources and invoking grid services.
GridR was mainly developed in the context of the ACGT project [9] with the main

1 http://www.agma-mmc.de/03_forschung/plakat.asp?topnav=10&subnav=199

goal to enable users to gain profit from using a distributed environment (speed-up,
scalability, etc.) within R scripts but without the need for dealing with the complexity
of the distributed environment.

The GridR toolkit consists of three components: the GridR R environment, the
GridR services and the GridR client. The GridR R environment basically is a standard
R environment with some additional packages installed. The GridR services are high
level components implemented as grid or web services that, e.g. as in the context of
ACGT, can be used in a workflow environment, provide additional functionality like
connecting to R script repositories, interface with scheduling components built on top
of grid middleware, etc. The GridR client, which is implemented in form of an R
package, is a very flexible tool which can be used for contacting components
responsible for resource management in distributed environments. It can interface
with the GridR services or directly with grid-middleware components or cluster
management systems and in particular provides the functionality of remote method
invocation in a distributed environment. In detail, the GridR client contains
components for submitting jobs to the GT4 grid middleware [10], to the Condor
system [6] which can also interface with grid middleware as well as to simple pools of
machines contacted via SSH.

Fig. 2. Layered architecture of a grid system with 4 layers. The components of GridR are
depicted to the respective layers. The arrows visualize in which way and across which layers
the GridR components are able to interface with the each other as well as other components of
the architecture and show the flexibility of the GridR toolkit.

Most of today’s large grid-based systems are based upon layered architectures,
consisting e.g., of a Client Layer containing components like the user interfaces, a
Services Layer providing high level services and interfaces, a Grid Layer containing
grid middleware components, and a Resource Layer that contains the hard- and
software resources accessible in the environment. Fig. 2 describes a layered
architecture as it is, e.g., developed within the ACGT project, in an abstract way and
depicts to which layers the GridR components belong.

3.2 Parallelization Technique

In the following, we present a way of how to make use of parallel computation using
the GridR client component of the GridR toolkit. Parallelism can be expressed in the
workflow at the client layer in GridR. It provides the functionality of submitting R
code packaged in a function as a job for execution in a distributed environment. The

jobs are submitted in the background and a resource management system, e.g. the
Globus Toolkit or Condor, can process them in parallel. Fig. 3 visualizes the approach
of client side parallelization by generating a number of jobs at the client side,
submitting them via the appropriate interfaces to a resource management system and
processing them on the execution machines.

Fig. 3. GridR client side parallelization – On the client side an R script is executed that submits
a number of jobs (e.g., inside a for-loop) to resource manager, e.g. the GT4 grid middleware or
the Condor cluster management system. The jobs run in parallel in the execution environment
and compute the same R function (e.g. with different parameter settings).

We now describe a technique of server side parallelization of R scripts which relieves
the clients from handling parallelism. Instead of submitting a number of independent
tasks that are computed in parallel, a single job is submitted that is processed as
parallel job. As in a sequential execution, the client just has to submit an R script
calc() containing the algorithm that performs the analysis as a single job to a resource
management system, but wrapped by another function wrap(). In addition, this
function also has a parameter indicating the desired parallelization degree that has to
be specified. The script containing the wrapper function which is executed on the
server side is responsible for the generation of subtasks as well as the result
aggregation. Generation of subtasks means in detail that from the execution process
on the server side another job-submission process is started. This can be achieved
easily by instantiating the GridR client on the server side. This instance of the GridR
client submits a number of sub-jobs to a resource management system which process
the actual computation tasks on the execution machines.

With this approach of instantiating the GridR client on the server side, where the
server takes the role of a client during the processing of jobs, users are enabled to set
up complex parallel applications flexibly by even involving different resource
management systems or environments (grid, cluster) as well as to make use of
recursion. With this approach it is still possible to modify the R script specifying the
algorithm independently from the parallelization because the latter is packaged into a
separate wrapper function. It would be even possible to set up a collection of
predefined wrapper scripts for some tasks (e.g. result aggregation) which would allow
combining wrappers with different algorithms depending on the scenario.

Hence, there are several possibilities of combining different grid- or cluster-based
resource managers by also making use of recursion. Fig. 4 visualizes this approach of
server side parallelization as an example of submitting a single job from the client

R script

Function calc(..) {..}
for {

 submit_job(..)
}
wait_for_results()
merge_results()

Resource
Manager

R-script

calc()

Client Execution environment

Job-submission
to Grid/Cluster

side to the grid and submitting a number of parallel sub-jobs from the grid execution
environment to a cluster. This setting is also later used in the presented application
scenario in Section 4.

Fig. 4. Example of GridR server side parallelization – Instead of generating a number of jobs at
the client side, the client submits just a single job to a resource management system, e.g. the
GT4 grid middleware. In the execution environment, the job is processed and computes the
wrapper function, which internally starts launching a number of sub-jobs that are computed in
parallel to a resource manager, e.g. the Condor cluster management system, again. By this, the
functionality for client side parallelization (see Fig. 3) can be used on server side in the
execution environment even in a recursive way.

4 Parallelization of the application

4.1 Motivation

The scenario we selected for experimental evaluation calculates mean network ratings
for a (rather small) number of poster types and network sizes in 12 cities, amounting
to a total of 92 parameterizations. Each parameterization was repeated 100 times for
averaging. If computed on a stand-alone machine, the expected runtime of the
experiment would amount to about one year. For being able to compute the scenario
at all, the application has to be speeded up. Candidate technique for this is the
parallelization of subtasks of the application’s algorithm. Hence, it has to be clear if
the algorithm can be parallelized at all. In our application scenario, the algorithms can
be parallelized in theory because it contains a loop with independent steps based on
randomly fetched data. But, it is not directly obvious if a parallelization will improve
the runtime in practice because the data is stored in a central database which could be
a bottleneck.

A further constraint in the application scenario is that the GPS data is confidential,
which results in the fact that the database is only accessible from machines in the FhG
cluster. For this reason, the application was not deployed in a grid environment but
rather in an environment where the computation is performed on a single computing
cluster.

Resource Manager Resource Manager R script

Function calc(..) {..}
Function wrap(..) {..}

submit_multijob(..)

R-script
wrap(..) {
 for {
 submit_job(..)
 }
 wait()
 merge()
}

Client

R-script

calc()

Grid environment Cluster environment

Moreover, the algorithm developer/data miner has no knowledge about distributed
environments, grid middleware and tools for parallel programming. As the algorithm
is written in R, GridR appears as candidate tool for the parallelization of the
application as it provides the access to distributed environments in a seamless way.

The following sections give details on how the application was parallelized using
the presented technique as well as on the evaluation of the gain of the parallelization
in praxis, done by several experiments.

4.2 Parallelization

In this section, the technique of parallelization is applied to the application. The
application scenario is as follows. The client, which is used by the marketing experts
in the advertising companies, contacts a resource management system of a distributed
environment and submits jobs (computing the reach of poster networks) that are
processed on the dedicated execution machines. In our case, a computing cluster
managed by Condor and the data provided by our institute was used. The Condor
batch processing system [6] is a cluster management system for computing-intensive
jobs, providing mechanisms for queuing, scheduling and resource management. Jobs
can be submitted to the Condor system as independent tasks. Condor places them in a
queue and decides upon a policy when and where to run the tasks. Technically, R is
the executable that is called when the Condor jobs are processed on the execution
machines in the pool, taking the wrapper script, which contains the analysis script, as
input.

In our application scenario, the wrapper script submits n subtasks to Condor, each
taking the analysis script as input now. These subtasks compute the AGMA scenario
in parallel. They draw a random sample of posters along with the trajectory data from
a central database and compute the poster reach. The wrapper script waits for the
appearance of all results and then averages them. In the AGMA scenario, averaging of
n=100 parallel runs varying the poster network was required to achieve the desired
stability in the result.

Summarizing, GridR together with the presented technique of parallelization
enables users to submit a single job that is automatically split up in a number of
parallel tasks on the server side. As an advantage, the code that is executed on the
client side becomes smaller as there is no need for result checking and result
aggregation on the client side. Furthermore, communication overhead is reduced
because the splitting into parallel tasks and the result aggregation are performed on
the cluster side. Consequently, performance is increased as computing clusters as,
e.g., a Condor pool, are specially set up for allowing high speed communication
between the execution machines.

4.3 Experiments

We conducted artificial experiments with a reduced computational load and real-
world experiments to evaluate our system. The goal of the artificial experiments was
to test whether it is useful to parallelize the application at all, having in mind that each
parallel task has to get the trajectory data from the central database, thus inducing a

parallel load on the database server. The big real-world application then delivered the
data proving the feasibility of our system by computing the reach of 92 poster
campaigns in 12 German cities.

The setup of our experiments was as follows: The experiments were processed on
a PC cluster managed by Condor. In total, the cluster consists of 30 AMD Opteron 2.2
GHz machines running Condor on Linux. Each machine holds 2 CPUs, 8 GB memory
and two local HDDs with 120 GB. The database machine is an Intel Dual Core 2x2.6
GHz with 4 GB memory, 2x250 GB HDD (1 x System-HDD, 1 x DB-HDD), running
Oracle 10.2 on Linux. All machines are connected by a 1GBit network connection.
Throughout the experiments it could not be guaranteed that all resources of the pool
were free and accessible for the full period of computation.

Artificial experiment. Each of the parallel tasks first draws the trajectory data and
randomly chosen posters from the central database server and then locally computes
the reach of the poster campaigns. As all parallel tasks compete in the database
access, the ratio between the time needed for the database access and local
computation has a direct effect on the expected speedup in a parallelization. We
conducted experiments in which the size k of the inner simulation loop of the local
computation was varied from 1 to 100, with 100 being required in the real-world
experiment. The results are shown in Table 1.

Table 1. Local execution of a task with varying simulation loop size k (in seconds).

The chosen task computed the reach of a poster campaign with 321 posters, retrieving
from the database the trajectories collected by 535 persons over a week in Cologne
(about 430,000 street segments, roughly 7 MB). As we can see from Table 1, even if
the database access takes 75.5% in the (hypothetical) worst-case of minimal local
computation (k=1), only 2.7% of the computation time are spent with the access to the
database system in the parameter setting required for the real world application
(k=100), thus giving a high chance for achieving speedup in parallelization.

Based on this positive result, we conducted an experiment to find out whether the
central database server was a bottleneck in the parallel execution. We studied the
hypothetical worst case in which 75.5% of the computation time was spent on
database access (k=1) and varied the number n of parallel executions for different
poster networks. The results are shown in Table 2:

Table 2. Parallel execution of n tasks with 75.5% database access (in seconds).

Simulation loop size k : 1 20 40 60 80 100
Computation time: 143 799 1,496 2,197 2,897 3,569

% database acc.: 75.5% 12.1% 6.5% 4.4% 3% 2.7%

parallel tasks n: 5 10 20 30 40 50 60
Cluster runtime: 140 150 330 320 450 540 320
Aggregated runtime: 625 1,251 2,502 3,754 5,005 6,257 7,508
Speedup: 4.4 8.3 7.5 11.7 11.7 11.6 23.4

Table 2 depicts the results in the case in which n parallel tasks are started
simultaneously and actually access the data at the same time. The cluster runtime
denotes the job computation time on the cluster, the aggregated runtime is the sum of
the execution times of the individual tasks, and the speedup is defined by the ratio
between the aggregated and the cluster runtime (we use this definition in order to be
consistent with the real-world experiment described below). The computation was
parameterized with k=1 to let each local task spend 75.5% of the time with the
database access. Given these conditions, the results are promising: the database
system did not dramatically slow down the parallel executions. We noted, however
that the non-predictable caching effects of the database seemed to have direct effects
on the speedup achieved. This is explained by the high fraction of database access in
the computation from Table 2. In the real-world application, however, the percentage
of database usage is 2.7% only and the parallel runs are much more interleaved. The
artificial experiments correspond to the campaign depicted in line 3 of Table 3 below,
in which we achieved a much higher speedup.

Real world experiment. We tested the runtime behavior for the computation of
average campaign ratings in 12 cities. In each city, poster networks of the type
column (C), billboard (BB), city light poster (CLP) or mega light (ML) were drawn
respecting different campaign sizes. Each parameterization was averaged over a group
of 100 tasks, amounting to 9,200 tasks in total. Table 3 shows an excerpt of the job
parameterizations and execution times for the city of Cologne.

As stated earlier, the runtime of a task depends upon the number of test persons
available for the city and the size of the campaign, which is derived from the
advertising pressure. Thus, the scenario provides a variety of input data. Fig. 5 left
shows the average task runtime depending linearly on the volume of input data, which
is defined as the number of test persons multiplied by the number of posters.

Table 3. Parameterization and results showing runtimes (in seconds) and speedup for
the computation of values for the city of Cologne – 8 jobs with 100 tasks.

Poster
type

Advertising
pressure

Poster

Test
persons

Average run-
time per task

Aggregated
runtime

Cluster
runtime

Speed-
up

CLP normal 740 533 8,326 832,566 21,488 39
BB high 483 533 4,619 461,939 20,104 23
BB medium 321 533 3,482 348,169 8,315 42
BB low 241 533 2,832 283,218 7,751 37
C high 161 533 3,353 335,288 12,069 28
C medium 121 533 2,751 275,071 9,092 30
C low 97 533 2,362 236,245 10,641 22
ML normal 102 533 1,712 171,173 8,243 21

Fig. 5 right displays the relationship between the sum of individual task runtimes and
the total runtime on the cluster for all 92 jobs. On average, we obtained a speedup of
45 which is a plausible result for the execution of 100 tasks on a cluster of 60
machines. On evaluation of the results, we detected four anomalous jobs (marked
with triangles in Fig. 5 right), which did not terminate properly because some of their

tasks failed. The extreme outlier on the top left results most likely from external jobs,
which competed for cluster and database resources.

Fig. 5. left: Runtime behavior vs. input volume; right: Cluster runtime vs. sum of individual job
runtime

5 Related Work

In recent years, a number of research projects developed middleware packages that
enable users to access remote computing clusters. Grid technology such as the popular
GT4 toolkit [10] makes computational resources available across geographical and
organizational borders. European projects such as ACGT [9] establish an integrated
grid infrastructure for a pan-European analysis of medical cancer data. While remote
computing clusters made available by grid technology are mostly used for the
submission of independent computations, parallel computations can either be defined
in the workflow at the client layer or have to be implemented explicitly by the use of
parallel programming libraries such as MPICH-G2 [11] or Ibis for Java [12]. Both
solutions are not transparent to the user. As a consequence, in most cases, computing
clusters made accessible by grid technology are not considered as “parallel
machines”. The same holds for cluster management systems such as Condor [6] that
allow starting independent jobs in a cluster and then take care of load balancing,
accounting, etc. A lot of components and tools, e.g. like MPICH-G2 as environment
for parallel programming, Condor as cluster management system or DataMiningGrid
[13] as grid-environment aim at providing support for computing different kinds of
programs in distributed environments. However, these efforts lack of integration with
the R environment on the client side as they support only the execution of R scripts
taking R as executable in the respective execution environment.

In [14] an overview on the state-of-the-art research in the context of R and web and

grid services is given. Some rudimentary support for building client-server
applications that use R on the server side has been offered by toolkits like Rserve [15]
or Rweb [16]. Support for concurrent computations in R is provided by packages such
as rpvm [17], rmpi [18] and snow (Simple Network Of Workstations) [19]. Rpmv and
rmpi provide wrappers to the parallel programming packages parallel virtual machine
(PVM) [20] and message-passing interface (MPI) [21] respectively. These approaches

require explicit orchestration of message passing in the parallel execution of R scripts
and are only suitable for closely-coupled homogeneous environments. The snow
package provides a higher level of abstraction that is independent of the
communication technology. pR [22] supports a fully transparent and automatic
parallelization of R code based on MPI. However, in contrast to GridR, pR as well as
the other efforts discussed in this paragraph do not offer a seamless integration with
grid technology.

6 Conclusion and outlook

In this paper, we have shown and applied techniques for the parallelization of R-
programs in grid environments using our grid-tool GridR. The considered application
enables marketing departments from all over Germany to compute the reach of
outdoor poster campaigns based on trajectories of test persons. As the R-based
computation of the reach requires substantial computational efforts, the application
requires access to a pool of execution machines that executes the analysis tasks and
holds the data. With GridR, we enable the parallel execution of R scripts on resource
management systems in distributed environments, e.g. on the grid as well as on
clusters. Using this technique in our application, a client can submit and initiate
parallel computations of R scripts. In the considered application, we managed to
compute the complete scenario of 12 cities in a few days compared to the hypothetical
sequential execution time of roughly a year.

In addition to the case study presented, the ability introduced by GridR to bind the
R-execution environment to distributed infrastructures opens a large field of further
potential use cases that arise from the wide use and the richness of the R-language. R
itself already provides a lot of interfaces to different data sources, e.g. databases, data-
streams or file systems. Hence, scenarios are possible that, in contrast to the
considered application, are based on distributed data. Moreover, GridR already
supports partially (for some resource managers) or can be extended to support sending
jobs to dedicated machines for execution so that users can specify which (part of the)
algorithm is to be processed on which machine. This feature can be used to set up
distributed R-programs that process continuous data.

Although the application described in this paper features spatio-temporal data
collected by mobile devices and utilizes distributed mining, it is only a first step
towards ubiquitous knowledge discovery. Independently of the current project we are
developing a mobile application that replaces standard GPS-devices by mobile phones
[23]. This GPS tracking application for mobile phones subsumes GPS tracking and
GPS track annotation and will allow for a distributed data collection exploiting a web-
based client/server design that supports storing the (annotated) GPS data directly on a
remote database system.

Acknowledgements. The authors gratefully acknowledge the support of the ACGT
project that is funded by the European Commission (FP6/2004/IST-026996).

References

1. Bhat, C.R., Srinivasan, S., Bricka, S.: Conversion of Volunteer-collected GPS Diary Data
into Travel Time Performance Measures: Literature Review, Data Requirements, and Data
Acquisition Efforts, Research Report 5176-1, Center for Transportation Research, The
University of Texas at Austin (2004)

2. Bricka, S.: Non-Response Challenges in GPS-based Surveys, Resource Paper Prepared for
the May 2008 International Steering Committee on Travel Survey Conferences Workshop
on Non-Response Challenges in GPS-based Surveys (2008)

3. Martial, P., Hofmann, U., Mende, F.H., May, M., Hecker D., Körner, C.: Modelling and
prospects of the audience measurement for outdoor advertising based on data collection
using GPS devices (electronic passive measurement system), 8th International Conference
on Survey in Transport (2008)

4. R Development Core Team: R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, (2005)

5. Wegener, D., Sengstag, T., Sfakianakis, S., Rüping, S., Assi, A.: GridR: An R-based grid-
enabled tool for data analysis in ACGT clinico-genomic trials. In: Proceedings of the 3rd
IEEE International Conference on e-Science and Grid Computing, Bangalore, India (2007)

6. Litzkow, M., Livny, M.: Experience with the condor distributed batch system. In: Proc
IEEE Workshop on Experimental Distributed Systems (1990)

7. Arbeitsgemeinschaft Media-Analyse e.V.: Infos für Presse, Radio, TV und Online,
Press Release 17.12.2007. http://www.agma-mmc.de

8. Kragh, A.P., Ornulf, B., Richard, G.D., Niels, K.: Statistical Models Based on Counting
Processes. Springer Series in Statistics. Springer, Berlin Heidelberg New York (1993)

9. The ACGT project (EU): http://eu-acgt.org/
10. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP

International Conference on Network and Parallel Computing, Springer-Verlag LNCS
3779, pp. 2-13 (2005)

11. Karonis, N., Toonen, B., Foster, I.: MPICH-G2: A Grid-Enabled Implementation of the
Message Passing Interface. Journal of Parallel and Distributed 63(5), pp. 551-563 (2003)

12. van Nieuwpoort, R. V., Maassen, J., Wrzesinska, G., Hofman, R., Jacobs, C., Kielmann, T.,
Bal, H. E.: Ibis: a flexible and efficient Java-based Grid programming environment.
Concurrency & Computation: Practice & Experience 17(7-8), pp. 1079-1107 (2005)

13. Stankovski, V., Swain, M., Kravtsov, V., Niessen, T., Wegener, D, Kindermann, J,
Dubitzky, W. Grid-enabling data mining applications with DataMiningGrid: An
architectural perspective. Future Generation Computer Systems 24 (4), pp. 259-279 (2008)

14. Li, N., Morgan, M.T., Falcon, S., Gentleman, R.: Approaches to R as web and analytic
service. RWebServices Documentation, Fred Hutchinson Cancer Research Center (2006)

15. Urbanek, S.: Rserve - A Fast Way to Provide R Functionality to Applications. In: Proc. of
the 3rd International Workshop on Distributed Statistical Computing. Eds.: Kurt Hornik,
Friedrich Leisch & Achim Zeileis (2003)

16. Banfield, J.: Rweb: Web-based Statistical Analysis. Journal of Statistical Software, 4(1)
(1999)

17. rpvm: R interface to PVM: http://cran.r-project.org/src/contrib/Descriptions/rpvm.html
18. H. Yu. Rmpi package for R. http://www.stats.uwo.ca/faculty/yu/Rmpi/
19. A. Rossini, L. Tierney, and N. Li. Simple parallel statistical computing. UW Biostatistics

working paper series (2003)

20. PVM: http://www.csm.ornl.gov/pvm/pvm_home.html
21. MPI Forum: http://www.mpi-forum.org
22. Ma, X. and Li, J. and Samatova, N.F., “Automatic Parallelization of Scripting Languages:

Toward Transparent Desktop Parallel Computing”, IEEE International Parallel and
Distributed Processing Symposium (2007)

23. Mock, M., Rohs, M.: A GPS Tracking Application with a Tilt- and Motion-Sensing
Interface, 2nd Workshop on Mobile and Embedded Interactive Systems (MEIS'08) on the
GI-Informatik 2008 Conference, Munich (2008) (accepted for publication)

