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Abstract. In this paper, we show how computing intensive R-applications can 
be parallelized in a grid environment using GridR, our tool for the seamless 
integration of R-programs in grid environments. We apply the GridR 
parallelization in a GPS-trajectory mining application that calculates the reach 
and gross contacts of outdoor poster advertisements and demands for 
scalability. The application provides the foundation for price calculations for all 
outdoor advertisement throughout Germany. In our approach to parallelization, 
users are free to submit sequential or parallel R-programs to the grid or directly 
to cluster-based parallel execution environments. The execution is mapped 
transparently to the chosen execution environment in such a way that neither 
the user nor the R-programmer of the data mining algorithm is affected. We 
present the overall approach to the parallelization of R-applications and the 
performance results achieved with the GPS-trajectory mining application. 
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1 Introduction 

Ubiquitous Knowledge Discovery investigates learning in mobile and distributed 
environments. To do so, we need to utilize infrastructures that support distributed data 
mining tasks in a flexible manner. Sensor networks, peer-to-peer networks, grid 
computing are examples of such infrastructures. In this paper we investigate a highly 
flexible tool for distributing and parallelizing data mining applications in grid 
environments using the R language for statistical computing. We investigate its 
usefulness in a specific application setting: track mining from GPS data; the tool itself 
however is completely generic. 

The analysis of spatio-temporal data is a broad field of research. During the past 
years, several GPS studies have been conducted in transportation research to analyze 
the travel behavior of persons. Most of the studies are based on GPS data collected 
within a single city with up to a few hundred test persons [1, 2]. A rather large GPS 



study has been conducted in Switzerland, including about 10,000 test persons from 12 
conurbations [3]. 

The data mining application described in this paper computes the reach and gross 
contacts of outdoor poster campaigns based on GPS-tracks of a set of test persons. 
Reach is defined as the percentage of a population exposed to a campaign within a 
certain period of time (e.g., a week). Gross contacts are the total number of contacts a 
campaign achieves. Both measures serve as common currency for comparing the 
performance of campaigns in the advertisement business. Typical users are located in 
marketing departments of a production company and want to evaluate the reach of 
poster campaigns for outdoor advertisements. The data on which the evaluation takes 
place was collected in a nationwide study in Germany and consists of trajectories that 
reflect the outdoor movements of a representative sample of 30,000 test persons. The 
data is stored in a central database in our computing cluster, in which the computation 
is executed. 

The considered GPS-trajectory mining application is written in the statistical 
language R [4]. The algorithm makes use of simulation and advanced statistics and is 
extremely computing intensive. The scenario used for evaluation comprises 12 
German cities and would have taken roughly a year to compute on a conventional PC, 
what is not acceptable for the application scenario. In addition, taking into account 
that calculations might be performed nation-wide for each city in the country, 
scalability is a key issue for this application. In conclusion, the application must be 
executed in parallel on a high-performance computing cluster, thus raising the 
demand for a parallelization and a remote access to computing clusters for R-
programs. We have developed a grid-based analysis tool called GridR [5], which 
provides the user of R with a convenient access to distributed computing resources. In 
this paper, we show how this access can be extended to R-programs that run in 
parallel either on a computing cluster or on other computing resources made available 
through the grid. We show techniques to parallelize R-applications with GridR either 
on the client-side or on the server side. Furthermore, the R-program for parallelization 
and the R-program of the original data-mining algorithm can be separated, such that 
the programmer of the data-mining algorithm is not affected. In the considered GPS-
trajectory mining application, the execution of the R-application is mapped 
transparently onto a computing cluster which itself is managed by the Condor system 
[6]. We present and discuss the performance gain of the parallelization and show that 
the parallelization of the computation achieves acceptable response times, even if 
each of the parallel tasks requires access to a central database. In addition, we present 
the performance results of the poster reach estimation for different poster campaigns. 

The remainder of the paper is organized as follows: section 2 presents the 
application scenario. The GridR tool and its parallelization capabilities are presented 
in section 3, and section 4 reports on the parallelization of the GPS-trajectory mining 
application. Related work is presented in section 5. We conclude with a short 
summary in section 6. 



2 The AGMA Application 

In Germany, the outdoor advertisement industry records a yearly turnover of more 
than 800 million euros. The Arbeitsgemeinschaft Media-Analyse e.V. (ag.ma) – a 
joint industry committee of around 250 principal companies of the advertising and 
media industry in Germany – authorized the AGMA project, which provides the 
foundation for price calculations in outdoor advertisement throughout Germany. In 
2006/07 the ag.ma commissioned a nationwide survey about mobile behavior and 
appointed Fraunhofer IAIS to calculate the reach and gross contacts of poster 
networks [7].  

Fig. 1 on the left shows a campaign of 321 billboards on arterial roads in Cologne. 
The right hand side displays the development of reach over a period of seven days. 
Reach is a time-dependent measure about the publicity of a poster network. It states 
the percentage of people which see at least one poster of the campaign within a given 
period of time, e.g. one week. The campaign reaches about 50 percent of the Cologne 
population on the first day, after one week about 90 percent of the population have 
seen a poster of the campaign. 

 
 

 
Fig. 1. Reach of a poster network in Cologne 

The basic input data of the AGMA application are trajectories and poster information. 
Nationwide, the daily movements of about 30,000 people have been surveyed using 
GPS technology and telephone interviews. This data amounts to about 21 million 
tuples where each tuple represents a section of a trajectory which has been mapped to 
the street network. Poster information indicating geographic location, type and 
visibility is available for approximately 230,000 posters. In order to determine reach 
and gross contacts, the intersections of a given poster network and the trajectory data 
have to be calculated. However, the number of test persons is rather small compared 
to the whole population of Germany and the trajectories do not span the full street 
network. Therefore, we introduce variance to the data by performing a geographically 
restricted simulation of the trajectories. The resulting simulated trajectories serve as 
basis for computation of reach and gross contacts. However, the trajectories suffer 



from incompleteness in terms of missing measurements due to defective GPS devices 
or the forgetfulness of test person, which easily interrupt the series of measurement 
days. These deficiencies are treated in the modelling step by applying the Kaplan-
Meier survival analysis technique [8]. Details of the analysis technique itself are not 
subject of this paper but are under preparation for a separate publication. A detailed 
documentation of the study is already available at the ag.ma website1 (in German).  

Our computations are implemented using the statistical software R, as R directly 
supports statistical analysis including the Kaplan-Meier method. At the beginning, the 
script retrieves input data by triggering several database queries that read a (random) 
network of posters and the test persons’ movement data. Afterwards, a 100-fold 
simulation of trajectories is performed, and reach and gross contacts are calculated. In 
previous tests, we determined a number of 100 simulations to achieve stable results. 
Finally, the results are stored in a text file. 

In addition to calculations regarding a particular poster campaign, the advertising 
industry is also interested in mean network ratings. This requires the repeated 
execution of the script with randomly selected poster campaigns of specified size, and 
subsequent averaging of results. Depending on the size of the poster network, stable 
results can be achieved by using 30-100 repetitions.  
The input parameters allow for a variety of combinations. For instance, the 
geographic location of a poster network can span from a single city up to 
combinations of cities to federal states or whole Germany. Also, the target population 
can vary. For instance, it is interesting to know the amount of contacts contributed by 
people living in the surrounding area of a large city. Other parameters are the size of 
the campaign and the poster type. Depending on parameterization, the execution time 
to calculate reach and gross contacts of a single campaign varies between several 
minutes and a few days. Thereby, the main influence factors are the number of target 
test persons and the size of the poster network. Clearly, the large number of 
parameterizations prohibits advance computation of all possible settings, so that 
computations must be performed on demand. This requires an execution in reasonable 
time, which applies in particular to mean computations, where 30-100 repetitions of a 
setting must be executed. Therefore, scalability plays a crucial role in the application. 

3 Parallel processing with GridR 

3.1 GridR 

In previous work, we developed GridR [5] as analysis tool based on the statistical 
environment R [4] that allows using the collection of methodologies available as R 
packages in a grid environment. The R language is a de facto standard for statistical 
research and is used by many applied statistics projects as it provides a broad range of 
state-of-the-art statistical and graphical techniques as well as advanced data mining 
methods. In GridR, the R environment has been grid enabled in a way that it allows to 
be used as user interface for accessing grid resources and invoking grid services. 
GridR was mainly developed in the context of the ACGT project [9] with the main 

                                                           
1 http://www.agma-mmc.de/03_forschung/plakat.asp?topnav=10&subnav=199 



goal to enable users to gain profit from using a distributed environment (speed-up, 
scalability, etc.) within R scripts but without the need for dealing with the complexity 
of the distributed environment.  

The GridR toolkit consists of three components: the GridR R environment, the 
GridR services and the GridR client. The GridR R environment basically is a standard 
R environment with some additional packages installed. The GridR services are high 
level components implemented as grid or web services that, e.g. as in the context of 
ACGT, can be used in a workflow environment, provide additional functionality like 
connecting to R script repositories, interface with scheduling components built on top 
of grid middleware, etc. The GridR client, which is implemented in form of an R 
package, is a very flexible tool which can be used for contacting components 
responsible for resource management in distributed environments. It can interface 
with the GridR services or directly with grid-middleware components or cluster 
management systems and in particular provides the functionality of remote method 
invocation in a distributed environment. In detail, the GridR client contains 
components for submitting jobs to the GT4 grid middleware [10], to the Condor 
system [6] which can also interface with grid middleware as well as to simple pools of 
machines contacted via SSH. 

Fig. 2. Layered architecture of a grid system with 4 layers. The components of GridR are 
depicted to the respective layers. The arrows visualize in which way and across which layers 
the GridR components are able to interface with the each other as well as other components of 
the architecture and show the flexibility of the GridR toolkit. 

 
Most of today’s large grid-based systems are based upon layered architectures, 
consisting e.g., of a Client Layer containing components like the user interfaces, a 
Services Layer providing high level services and interfaces, a Grid Layer containing 
grid middleware components, and a Resource Layer that contains the hard- and 
software resources accessible in the environment. Fig. 2 describes a layered 
architecture as it is, e.g., developed within the ACGT project, in an abstract way and 
depicts to which layers the GridR components belong. 

3.2 Parallelization Technique 

In the following, we present a way of how to make use of parallel computation using 
the GridR client component of the GridR toolkit. Parallelism can be expressed in the 
workflow at the client layer in GridR. It provides the functionality of submitting R 
code packaged in a function as a job for execution in a distributed environment. The 



jobs are submitted in the background and a resource management system, e.g. the 
Globus Toolkit or Condor, can process them in parallel. Fig. 3 visualizes the approach 
of client side parallelization by generating a number of jobs at the client side, 
submitting them via the appropriate interfaces to a resource management system and 
processing them on the execution machines. 

 
Fig. 3. GridR client side parallelization – On the client side an R script is executed that submits 
a number of jobs (e.g., inside a for-loop) to resource manager, e.g. the GT4 grid middleware or 
the Condor cluster management system. The jobs run in parallel in the execution environment 
and compute the same R function (e.g. with different parameter settings). 

We now describe a technique of server side parallelization of R scripts which relieves 
the clients from handling parallelism. Instead of submitting a number of independent 
tasks that are computed in parallel, a single job is submitted that is processed as 
parallel job. As in a sequential execution, the client just has to submit an R script 
calc() containing the algorithm that performs the analysis as a single job to a resource 
management system, but wrapped by another function wrap(). In addition, this 
function also has a parameter indicating the desired parallelization degree that has to 
be specified. The script containing the wrapper function which is executed on the 
server side is responsible for the generation of subtasks as well as the result 
aggregation. Generation of subtasks means in detail that from the execution process 
on the server side another job-submission process is started. This can be achieved 
easily by instantiating the GridR client on the server side. This instance of the GridR 
client submits a number of sub-jobs to a resource management system which process 
the actual computation tasks on the execution machines.  

With this approach of instantiating the GridR client on the server side, where the 
server takes the role of a client during the processing of jobs, users are enabled to set 
up complex parallel applications flexibly by even involving different resource 
management systems or environments (grid, cluster) as well as to make use of 
recursion. With this approach it is still possible to modify the R script specifying the 
algorithm independently from the parallelization because the latter is packaged into a 
separate wrapper function. It would be even possible to set up a collection of 
predefined wrapper scripts for some tasks (e.g. result aggregation) which would allow 
combining wrappers with different algorithms depending on the scenario. 

Hence, there are several possibilities of combining different grid- or cluster-based 
resource managers by also making use of recursion. Fig. 4 visualizes this approach of 
server side parallelization as an example of submitting a single job from the client 
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side to the grid and submitting a number of parallel sub-jobs from the grid execution 
environment to a cluster. This setting is also later used in the presented application 
scenario in Section 4. 

 
Fig. 4. Example of GridR server side parallelization – Instead of generating a number of jobs at 
the client side, the client submits just a single job to a resource management system, e.g. the 
GT4 grid middleware. In the execution environment, the job is processed and computes the 
wrapper function, which internally starts launching a number of sub-jobs that are computed in 
parallel to a resource manager, e.g. the Condor cluster management system, again. By this, the 
functionality for client side parallelization (see Fig. 3) can be used on server side in the 
execution environment even in a recursive way. 

4 Parallelization of the application 

4.1 Motivation 

The scenario we selected for experimental evaluation calculates mean network ratings 
for a (rather small) number of poster types and network sizes in 12 cities, amounting 
to a total of 92 parameterizations. Each parameterization was repeated 100 times for 
averaging. If computed on a stand-alone machine, the expected runtime of the 
experiment would amount to about one year. For being able to compute the scenario 
at all, the application has to be speeded up. Candidate technique for this is the 
parallelization of subtasks of the application’s algorithm. Hence, it has to be clear if 
the algorithm can be parallelized at all. In our application scenario, the algorithms can 
be parallelized in theory because it contains a loop with independent steps based on 
randomly fetched data. But, it is not directly obvious if a parallelization will improve 
the runtime in practice because the data is stored in a central database which could be 
a bottleneck. 

A further constraint in the application scenario is that the GPS data is confidential, 
which results in the fact that the database is only accessible from machines in the FhG 
cluster. For this reason, the application was not deployed in a grid environment but 
rather in an environment where the computation is performed on a single computing 
cluster. 
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Moreover, the algorithm developer/data miner has no knowledge about distributed 
environments, grid middleware and tools for parallel programming. As the algorithm 
is written in R, GridR appears as candidate tool for the parallelization of the 
application as it provides the access to distributed environments in a seamless way. 

The following sections give details on how the application was parallelized using 
the presented technique as well as on the evaluation of the gain of the parallelization 
in praxis, done by several experiments. 
 
4.2 Parallelization 

In this section, the technique of parallelization is applied to the application. The 
application scenario is as follows. The client, which is used by the marketing experts 
in the advertising companies, contacts a resource management system of a distributed 
environment and submits jobs (computing the reach of poster networks) that are 
processed on the dedicated execution machines. In our case, a computing cluster 
managed by Condor and the data provided by our institute was used. The Condor 
batch processing system [6] is a cluster management system for computing-intensive 
jobs, providing mechanisms for queuing, scheduling and resource management. Jobs 
can be submitted to the Condor system as independent tasks. Condor places them in a 
queue and decides upon a policy when and where to run the tasks. Technically, R is 
the executable that is called when the Condor jobs are processed on the execution 
machines in the pool, taking the wrapper script, which contains the analysis script, as 
input. 

In our application scenario, the wrapper script submits n subtasks to Condor, each 
taking the analysis script as input now. These subtasks compute the AGMA scenario 
in parallel. They draw a random sample of posters along with the trajectory data from 
a central database and compute the poster reach. The wrapper script waits for the 
appearance of all results and then averages them. In the AGMA scenario, averaging of 
n=100 parallel runs varying the poster network was required to achieve the desired 
stability in the result. 

Summarizing, GridR together with the presented technique of parallelization 
enables users to submit a single job that is automatically split up in a number of 
parallel tasks on the server side. As an advantage, the code that is executed on the 
client side becomes smaller as there is no need for result checking and result 
aggregation on the client side. Furthermore, communication overhead is reduced 
because the splitting into parallel tasks and the result aggregation are performed on 
the cluster side. Consequently, performance is increased as computing clusters as, 
e.g., a Condor pool, are specially set up for allowing high speed communication 
between the execution machines.  

4.3 Experiments 

We conducted artificial experiments with a reduced computational load and real-
world experiments to evaluate our system. The goal of the artificial experiments was 
to test whether it is useful to parallelize the application at all, having in mind that each 
parallel task has to get the trajectory data from the central database, thus inducing a 



parallel load on the database server. The big real-world application then delivered the 
data proving the feasibility of our system by computing the reach of 92 poster 
campaigns in 12 German cities. 

The setup of our experiments was as follows: The experiments were processed on 
a PC cluster managed by Condor. In total, the cluster consists of 30 AMD Opteron 2.2 
GHz machines running Condor on Linux. Each machine holds 2 CPUs, 8 GB memory 
and two local HDDs with 120 GB. The database machine is an Intel Dual Core 2x2.6 
GHz with 4 GB memory, 2x250 GB HDD (1 x System-HDD, 1 x DB-HDD), running 
Oracle 10.2 on Linux. All machines are connected by a 1GBit network connection. 
Throughout the experiments it could not be guaranteed that all resources of the pool 
were free and accessible for the full period of computation. 
 
Artificial experiment. Each of the parallel tasks first draws the trajectory data and 
randomly chosen posters from the central database server and then locally computes 
the reach of the poster campaigns. As all parallel tasks compete in the database 
access, the ratio between the time needed for the database access and local 
computation has a direct effect on the expected speedup in a parallelization. We 
conducted experiments in which the size k of the inner simulation loop of the local 
computation was varied from 1 to 100, with 100 being required in the real-world 
experiment. The results are shown in Table 1. 

Table 1. Local execution of a task with varying simulation loop size k (in seconds). 

 

The chosen task computed the reach of a poster campaign with 321 posters, retrieving 
from the database the trajectories collected by 535 persons over a week in Cologne 
(about 430,000 street segments, roughly 7 MB). As we can see from Table 1, even if 
the database access takes 75.5% in the (hypothetical) worst-case of minimal local 
computation (k=1), only 2.7% of the computation time are spent with the access to the 
database system in the parameter setting required for the real world application 
(k=100), thus giving a high chance for achieving speedup in parallelization.  

Based on this positive result, we conducted an experiment to find out whether the 
central database server was a bottleneck in the parallel execution. We studied the 
hypothetical worst case in which 75.5% of the computation time was spent on 
database access (k=1) and varied the number n of parallel executions for different 
poster networks. The results are shown in Table 2: 

Table 2. Parallel execution of n tasks with 75.5% database access (in seconds). 

 

Simulation loop size  k :         1 20 40 60 80 100 
Computation time: 143 799 1,496 2,197 2,897 3,569 

% database acc.: 75.5% 12.1% 6.5% 4.4% 3% 2.7% 

# parallel tasks n:     5 10 20 30 40 50 60 
Cluster runtime: 140 150 330 320 450 540 320 
Aggregated runtime: 625 1,251 2,502 3,754 5,005 6,257 7,508 
Speedup: 4.4 8.3 7.5 11.7 11.7 11.6 23.4 



Table 2 depicts the results in the case in which n parallel tasks are started 
simultaneously and actually access the data at the same time. The cluster runtime 
denotes the job computation time on the cluster, the aggregated runtime is the sum of 
the execution times of the individual tasks, and the speedup is defined by the ratio 
between the aggregated and the cluster runtime (we use this definition in order to be 
consistent with the real-world experiment described below). The computation was 
parameterized with k=1 to let each local task spend 75.5% of the time with the 
database access. Given these conditions, the results are promising: the database 
system did not dramatically slow down the parallel executions. We noted, however 
that the non-predictable caching effects of the database seemed to have direct effects 
on the speedup achieved. This is explained by the high fraction of database access in 
the computation from Table 2. In the real-world application, however, the percentage 
of database usage is 2.7% only and the parallel runs are much more interleaved. The 
artificial experiments correspond to the campaign depicted in line 3 of Table 3 below, 
in which we achieved a much higher speedup. 

 
Real world experiment. We tested the runtime behavior for the computation of 
average campaign ratings in 12 cities. In each city, poster networks of the type 
column (C), billboard (BB), city light poster (CLP) or mega light (ML) were drawn 
respecting different campaign sizes. Each parameterization was averaged over a group 
of 100 tasks, amounting to 9,200 tasks in total. Table 3 shows an excerpt of the job 
parameterizations and execution times for the city of Cologne.  

As stated earlier, the runtime of a task depends upon the number of test persons 
available for the city and the size of the campaign, which is derived from the 
advertising pressure. Thus, the scenario provides a variety of input data. Fig. 5 left 
shows the average task runtime depending linearly on the volume of input data, which 
is defined as the number of test persons multiplied by the number of posters. 
 
Table 3. Parameterization and results showing runtimes (in seconds) and speedup for 
the computation of values for the city of Cologne – 8 jobs with 100 tasks. 
 
Poster 
type 

Advertising 
pressure 

# 
Poster 

# Test 
persons

Average run-
time per task 

Aggregated 
runtime 

Cluster 
runtime 

Speed-
up 

CLP normal 740 533 8,326 832,566 21,488 39 
BB high 483 533 4,619 461,939 20,104 23 
BB medium 321 533 3,482 348,169 8,315 42 
BB low 241 533 2,832 283,218 7,751 37 
C high 161 533 3,353 335,288 12,069 28 
C medium 121 533 2,751 275,071 9,092 30 
C low 97 533 2,362 236,245 10,641 22 
ML normal 102 533 1,712 171,173 8,243 21 
 
Fig. 5 right displays the relationship between the sum of individual task runtimes and 
the total runtime on the cluster for all 92 jobs. On average, we obtained a speedup of 
45 which is a plausible result for the execution of 100 tasks on a cluster of 60 
machines. On evaluation of the results, we detected four anomalous jobs (marked 
with triangles in Fig. 5 right), which did not terminate properly because some of their 



tasks failed. The extreme outlier on the top left results most likely from external jobs, 
which competed for cluster and database resources. 
 

 
Fig. 5. left: Runtime behavior vs. input volume; right: Cluster runtime vs. sum of individual job 
runtime 

5 Related Work 

In recent years, a number of research projects developed middleware packages that 
enable users to access remote computing clusters. Grid technology such as the popular 
GT4 toolkit [10] makes computational resources available across geographical and 
organizational borders. European projects such as ACGT [9] establish an integrated 
grid infrastructure for a pan-European analysis of medical cancer data. While remote 
computing clusters made available by grid technology are mostly used for the 
submission of independent computations, parallel computations can either be defined 
in the workflow at the client layer or have to be implemented explicitly by the use of 
parallel programming libraries such as MPICH-G2 [11] or Ibis for Java [12]. Both 
solutions are not transparent to the user. As a consequence, in most cases, computing 
clusters made accessible by grid technology are not considered as “parallel 
machines”. The same holds for cluster management systems such as Condor [6] that 
allow starting independent jobs in a cluster and then take care of load balancing, 
accounting, etc. A lot of components and tools, e.g. like MPICH-G2 as environment 
for parallel programming, Condor as cluster management system or DataMiningGrid 
[13] as grid-environment aim at providing support for computing different kinds of 
programs in distributed environments. However, these efforts lack of integration with 
the R environment on the client side as they support only the execution of R scripts 
taking R as executable in the respective execution environment. 

 
In [14] an overview on the state-of-the-art research in the context of R and web and 

grid services is given. Some rudimentary support for building client-server 
applications that use R on the server side has been offered by toolkits like Rserve [15] 
or Rweb [16]. Support for concurrent computations in R is provided by packages such 
as rpvm [17], rmpi [18] and snow (Simple Network Of Workstations) [19]. Rpmv and 
rmpi provide wrappers to the parallel programming packages parallel virtual machine 
(PVM) [20] and message-passing interface (MPI) [21] respectively. These approaches 



require explicit orchestration of message passing in the parallel execution of R scripts 
and are only suitable for closely-coupled homogeneous environments. The snow 
package provides a higher level of abstraction that is independent of the 
communication technology. pR [22] supports a fully transparent and automatic 
parallelization of R code based on MPI. However, in contrast to GridR, pR as well as 
the other efforts discussed in this paragraph do not offer a seamless integration with 
grid technology. 

6 Conclusion and outlook 

In this paper, we have shown and applied techniques for the parallelization of R-
programs in grid environments using our grid-tool GridR. The considered application 
enables marketing departments from all over Germany to compute the reach of 
outdoor poster campaigns based on trajectories of test persons. As the R-based 
computation of the reach requires substantial computational efforts, the application 
requires access to a pool of execution machines that executes the analysis tasks and 
holds the data. With GridR, we enable the parallel execution of R scripts on resource 
management systems in distributed environments, e.g. on the grid as well as on 
clusters. Using this technique in our application, a client can submit and initiate 
parallel computations of R scripts. In the considered application, we managed to 
compute the complete scenario of 12 cities in a few days compared to the hypothetical 
sequential execution time of roughly a year.  

In addition to the case study presented, the ability introduced by GridR to bind the 
R-execution environment to distributed infrastructures opens a large field of further 
potential use cases that arise from the wide use and the richness of the R-language. R 
itself already provides a lot of interfaces to different data sources, e.g. databases, data-
streams or file systems. Hence, scenarios are possible that, in contrast to the 
considered application, are based on distributed data. Moreover, GridR already 
supports partially (for some resource managers) or can be extended to support sending 
jobs to dedicated machines for execution so that users can specify which (part of the) 
algorithm is to be processed on which machine. This feature can be used to set up 
distributed R-programs that process continuous data. 

Although the application described in this paper features spatio-temporal data 
collected by mobile devices and utilizes distributed mining, it is only a first step 
towards ubiquitous knowledge discovery. Independently of the current project we are 
developing a mobile application that replaces standard GPS-devices by mobile phones  
[23]. This GPS tracking application for mobile phones subsumes GPS tracking and 
GPS track annotation and will allow for a distributed data collection exploiting a web-
based client/server design that supports storing the (annotated) GPS data directly on a 
remote database system. 
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