
Mining Recent Frequent Itemsets in Data
Streams with Optimistic Pruning

Kun Li1,2, Yongyan Wang1, Manzoor Elahi1,2, Xin Li3, and Hongan Wang1

1 Institute of Software, Chinese Academy of Sciences, Beijing, China, 100190
likun@ustc.edu

2 Graduate University of Chinese Academy of Sciences, Beijing, China, 100049
3 Department of Computer Science and Technology, Shandong University, Ji’nan,

China, 250101

Abstract. A data stream is a massive unbounded sequence of transac-
tions continuously generated at a rapid rate, so how to process the trans-
actions as fast as possible in the limited memory becomes an important
problem. Although it has been studied extensively, most of the existing
algorithms maintain a lot of infrequent itemsets, which causes huge space
usage and inefficient update. In this paper, a new algorithm, called OPFI-
stream, is proposed to mine all accurate frequent itemsets from sliding
window over data streams. The OPFI-stream algorithm maintains a dy-
namically selected set of itemsets in a prefix-tree based data structure.
By using an optimistic pruning strategy, quite a lot of infrequent itemsets
can be pruned during the construction and updates. Mining all frequent
itemsets with accurate frequencies is just to traverse the tree. Exper-
iments show that the performance is improved greatly even when the
user-specified minimum support threshold is small.

Key words: frequent itemsets, optimistic pruning, data stream, sliding
window

1 Introduction

Data stream is a new emerging class of applications in recent years, which is
often continuous, unbounded, high-speed and has a data distribution changing
with time [1]. Examples of such applications include financial analysis, network
monitoring, sensor networks, telecommunication data management, and others.

Mining frequent itemsets becomes one of the most important problems in the
data stream research area and presents new challenges. To mine data streams
efficiently, a highly compact data synopsis is needed and multiple scans on data
streams are not acceptable. Furthermore, recent data is more attractive than
the old history in data streams. It is a challenge to mine frequent itemsets from
recent data, since new items arrive and old items overdue with high speed.
Mining data streams requires fast, real-time processing in order to keep up with
the high-speed data arrival and mining results must be returned within short
response time.



There are many algorithms on mining frequent itemsets, but most of them
have some disadvantages. Traditional algorithms mining on static dataset usu-
ally have candidate generation, which often causes the problem of combinatorial
explosion. Most algorithms mining on data streams discard the candidate gener-
ation process and use the apriori [2] property to prune some infrequent itemsets.
But this pruning is far from enough because there are a large number of in-
frequent itemsets. These algorithms still maintain a lot of infrequent itemsets,
and the performance degrades dramatically when the user-specified minimum
support threshold is small.

In this paper, a new sliding window-based algorithm, called Optimistic Pruning
strategy based Frequent Itemset mining in Data Stream (abbreviated as OPFI-
stream), is proposed to mine all accurate frequent itemsets from data streams.
There is also no candidate generation in the OPFI-stream algorithm. It uses
a prefix-tree based data structure, called OPFI-tree, to maintain all frequent
itemsets in the sliding window. When constructing and updating the tree, an
optimistic pruning strategy is used to do the maximal pruning and prune most
of the infrequent nodes. It is both time and space efficient in update and mining
processes even when the user-specified minimum support threshold is small.

The rest of the paper is organized as follows. Section 2 describes the related
work on mining frequent itemsets in data streams. Section 3 gives the problem
formulations. The algorithm details are described in section 4. The experiments
are shown in section 5 and the last section concludes the paper.

2 Related Work

Mining frequent itemsets is first introduced by Agrawal et al.[2], and appears
as a basic step in many other mining problems such as mining association rules
[2], clustering [3], classification [4], etc. Apriori [2], FP-tree [5], Eclat [6] are
three typical algorithms of mining frequent itemsets on static dataset. And there
are hundreds of follow-up research publications on mining frequent itemsets on
static dataset. Most of these algorithms use a property, called apriori [2], to
prune some infrequent itemsets. The apriori property means that an itemset is
frequent only if all its sub-itemsets are frequent. Because traditional algorithms
mine the static dataset and require multiple scans on the dataset, they are not
suitable for mining data streams.

Researchers proposed many new algorithms on mining data streams during
the recent years, and these algorithms can be classified as approximate or accu-
rate and landmark window or sliding window. Lossy Counting [7] and FP-stream
[8] are approximate algorithms of mining data streams in landmark window.
LWF [9] is similar to Lossy Counting in finding frequent items first and then
generating frequent itemsets. There are also some algorithms mining recent fre-
quent itemsets in data streams. Chang et al. [10] proposed the estWin algorithm
to find approximate frequent itemsets over sliding windows. James Cheng et al.
[11] proposed the sliding window-based MineSW algorithm to mine approximate
frequent itemsets. Moment [12] is the first algorithm to maintain all closed fre-



quent itemsets from sliding window over data streams. An itemset is closed if
none of its proper supersets has the same frequency as it has. All frequent item-
sets with accurate frequencies can be derived from the closed frequent itemsets.
Some algorithms, such as Lossy Counting [7] and estWin [10], have candidate
generation and suffer from the combinatorial explosion problem. The FP-stream
[8] and Moment [12] algorithms maintain a lot of infrequent itemsets, which
causes huge memory usage and inefficient update. So the OPFI-stream algo-
rithm is proposed, which is sliding window-based and returns accurate results.
It has no candidate generation and prunes most of infrequent itemsets.

3 Problem Formulation

Definition 1 (Itemset) Let Σ be a set of items. We assume that there is a
lexicographical order among the items in Σ and we use a ≺ b to denote that item
a is lexicographically smaller than item b. An itemset, X = {x1, x2, ..., xn} is a
subset of Σ. An itemset containing k items is called a k-itemset. Furthermore,
an itemset can be represented by a sequence, wherein items are lexicographically
ordered. For instance, X = {a, b, c} is represented by abc, given that a ≺ b ≺ c.
We also use ≺ to denote the lexicographical order between two itemsets, i.e.,
ab ≺ abc ≺ ac.

Definition 2 (Transaction) A transaction is a tuple, (tid,X), where tid is the
id of the transaction and X is an itemset. The transaction supports an itemset,
Y , if X ⊇ Y . For simplicity, we may omit the tid when it is irrelevant to the
underlying idea of an algorithm.

Definition 3 (Data Stream) A transaction data stream is a sequence of in-
coming transactions. For simplicity, we use data stream instead of transaction
data stream. A window, W, can be 1) either time-based or count-based, and 2) ei-
ther a landmark window or a sliding window. In this paper, we use a count-based
sliding window with fixed size of N , which always contains recent N transactions.

Definition 4 (Frequent Itemset) The frequency of an itemset X in W, de-
noted as freq(X), is the number of transactions in W that support X. The sup-
port of X in W, denoted as sup(X), is defined as freq(X)/N . Let minsup be the
user-specified minimum support threshold, where 0 < minsup < 1, we say item-
set X is a Frequent Itemset in W, if sup(X) ≥ minsup or freq(X) ≥ minsup∗N .

The problem of mining recent frequent itemsets is to mine all frequent item-
sets with accurate frequencies from sliding window over data streams. And the
results can be returned at any time.

4 The OPFI-stream Algorithm

In this section, OPFI-stream algorithm is proposed to dynamically maintain all
frequent itemsets from the sliding window over data streams. The algorithm uses



a prefix-tree based structure, called Optimistic Pruning strategy based Frequent
Itemsets tree (abbreviated as OPFI-tree). Most infrequent nodes in the tree can
be pruned by the optimistic pruning strategy. All frequent itemsets and their
accurate frequencies can be returned at any time by a simple traversal on the
OPFI-tree. When the window moves, updating the OPFi-tree needs to delete
the oldest transaction, so all transactions in the sliding window are maintained
in the bit-sequences. A bit sequence of N bits is used to represent an item’s
occurrence information in the sliding window. If an item appears in the i-th
transaction of the current window, the i-th bit of the item’s bit sequence is set
to be 1; otherwise, it is set to be 0. The bit-sequence representation uses small
space and is very time efficient in computing itemset frequencies.

In order to help understand the algorithm better, we will first introduce the
basic OPFI-tree, which has no optimistic pruning. There are three important
phases on the basic OPFI-tree: constructing the tree in the window initialization
phase, updating the tree in the sliding phase, and mining the tree at any time
after the initialization phase. Then, we will apply the optimistic pruning strategy
on the basic OPFI-tree. Along with the descriptions, we will analyze OPFI-tree’s
important properties and correctness.

4.1 The Basic OPFI-tree

The basic OPFI-tree is similar to the tree described in [13]. It can be proved
[13] that all frequent itemsets are maintained in the basic OPFI-tree, but the
proof details are omitted here for lack of space. The basic OPFI-tree is a prefix-
tree based data structure. It is the OPFI-tree without the optimistic prun-
ing strategy. A node in the basic OPFI-tree stores the following information:
item, frequency, isFrequent, children. A path from the root to a node in the
basic OPFI-tree represents an itemset, so we will use nX to denote a node, where
X is the itemset it represents. In the rest of the paper, we will say a node is
(in)frequent if and only if its represented itemset is (in)frequent.

The basic OPFI-tree uses the apriori property [2] in construction and updates
to prune some infrequent nodes. There are two corollaries for us to use the apriori
property more efficiently, which can be derived from the apriori property directly.

Corollary 1 If nX is an infrequent node, then all children of nX are also in-
frequent.

Corollary 2 Itemset X = {a1, ..., ai, aj} is frequent, Y = {a1, ..., ai, ak} is in-
frequent, where a1 ≺ ... ≺ ai ≺ aj ≺ ak, then X ∪ Y = {a1, ..., ai, aj , ak} is also
infrequent.

The first corollary indicates that all the children of an infrequent node should
be pruned. Then we can see that all infrequent nodes are leaves in the basic
OPFI-tree. The second corollary means that some children of a frequent node
may be infrequent and should be pruned.

Because users are only interested in frequent itemsets, there is no need to
maintain all itemsets in the basic OPFI-tree. However, it is impossible to know a



node changing from infrequent to frequent if we only maintain frequent itemsets.
So the basic OPFI-tree maintains all frequent itemsets and a selected part of
infrequent itemsets. Then the algorithm will monitor the node status changes.
From corollary 1, all the children of an infrequent node should be pruned. When
the infrequent node becomes frequent, it may have frequent children, so the
subtree must be rebuild under this node. On the contrary, when a frequent node
changes to infrequent, all its descendants must be deleted from the tree. However,
most of nodes do not often change their status, and even if some status changes
occur, the operations will be limited in a small subtree. So the cost of updates
is small.

Fig. 1. Examples of Construction and Updates on the Basic OPFI-tree

The basic OPFI-tree is constructed in three steps:

1. Create a root node nφ.
2. Create |Σ| child nodes for nφ in the lexicographical order, i.e., each a ∈ Σ

corresponds to a child node n{a}.
3. Recursively do the construction on each child node n{a}, where a ∈ Σ. The

main principle in the construction is that if nX is frequent, then creating
child nodes for nX by joining nX and its frequent right siblings.

Figure 1 shows examples of construction and updates on the basic OPFI-tree,
where Σ = {a, b, c, d}, N = 4, and minsup = 0.5. Let’s take the constructed tree
as an example, n{ab} is frequent and has a frequent right sibling n{ac}, then
a child node n{abc} is created for n{ab}. We use child(nX) to denote the set of
child nodes for nX . However, when nX and its right sibling nY are frequent, child
n{X∪Y } may be infrequent even with small frequency. The optimistic pruning
strategy is designed to prune most of these infrequent nodes in child(nX).

4.2 The Optimistic Pruning Strategy

Although the basic OPFI-tree only maintains a selected part of infrequent item-
sets in the sliding window, the number of infrequent itemsets it maintains is still



very large. So the optimistic pruning strategy is proposed to prune infrequent
nodes with small frequencies. It is based on two observations:

Table 1. Number of Itemsets with Specified Frequencies

1 2 3 4 5 6-10 11-15 16-20 21-30 31-50
T10I4D100Ka ?? 480202 73543 24525 10480 25235 8597 6724 7933 3058

BMS-WebView-1a ?? 35292 2333 648 251 327 72 20 23 7
a Using 10000 transactions on T10I4D100K and 1000 on BMS-WebView-1.

– There are a large number of infrequent itemsets. The number of itemsets
with small frequency is much bigger than the number of itemsets with large
frequency. As be shown in table 1, as the frequency increases, the number of
itemsets drops dramatically. There is an error when frequency is 1, because
the number of itemsets with frequency 1 is too large to compute on our test
machine.

– Itemsets do not often change their status dramatically, so we can optimisti-
cally think that an infrequent itemset with small frequency will seldom
change its status to frequent.

In order to distinguish these infrequent nodes, OPFI-stream adds a new
property, called slackMinsup, such that 0 ≤ slackMinsup ≤ minsup. When
creating a new child node in the basic OPFI-tree, if its support is smaller than
slackMinsup, then it will be discarded. Obviously, all infrequent nodes will be
pruned when slackMinsup = minsup, and no special pruning is done under
the basic OPFI-tree when slackMinsup = 0. Although the maximal pruning
is achieved when slackMinsup = minsup, it is not acceptable because some
infrequent nodes with high support may change to frequent after some slides.
Frequently adding the previously pruned nodes will degrade the update perfor-
mance. So there is a compromise between the optimistic pruning strategy and
the update performance. We will find in the experiments that what is the best
value for slackMinsup to balance the pruning and performance.

We use opset(nX) to denote the infrequent itemsets pruned by the optimistic
pruning strategy under frequent node nX . Then estMaxsup property is added
for nX to estimate the maximal support of nodes in opset(nX). There are three
operations on estMaxsup:

1. Initialization. It happens when the basic OPFI-tree creates subtree for the
node nX which is either newly created or originally infrequent. We use
child(nX) to denote the direct children of nX in the basic OP-tree, then
we have

opset(nX) = {nX′ | nX′ ∈ child(nX), sup(nX′) < slackMinsup} (1)



Now the estMaxsup is initialized as

estMaxsup = max{sup(nX′) | nX′ ∈ opset(nX)} (2)

If there is no child node pruned by the optimistic pruning strategy, we have
opset(nX) = φ and estMaxsup = 0.

2. Update. There are three cases for the update operation:
(a) If a child node of nX is going to be added in the basic OPFI-tree

but pruned by the optimistic pruning, and it has support bigger than
estMaxsup, then update estMaxsup as the support.

(b) When nX increases its support, estMaxsup will also be increased. But
estMaxsup will not change if nX decreases its support.

(c) If a node’s support decreases to be smaller than the slackMinsup, then
the node is pruned and its parent’s estMaxsup is updated.

3. Re-Computation. When estMaxsup increases to minsup, which means that
some child nodes pruned ago maybe become frequent now, then the re-
compute operation occurs. The algorithm will scan all its possible child
nodes, and create new child nodes which have support bigger than slackMinsup,
so the left child nodes will constitute the new opset(nX). estMaxsup will
also be update during the scan.

estMaxsup will always meet the following requirement whatever operations
occur:

estMaxsup ≥ max{sup(nX′) | nX′ ∈ opset(nX)} (3)

Equation 3 means that estMaxsup will be never smaller than the maximal
support of the child nodes pruned by the optimistic pruning. The algorithm
can catch the moment that nodes in the opset become frequent, so no frequent
itemset will be lost in the sliding window streams. But it is also possible that
no new child node is added after the re-computation. Briefly, pruning infrequent
nodes is optimistic but updating estMaxsup is conservative.

Correctness Analysis

The most important thing in the optimistic pruning strategy is to maintain
estMaxsup. Now we will prove that equation 3 holds.

Proof. We only need to prove that equation 3 holds after the three operations:
initialization, update and re-computation.

When estMaxsup is initialized or re-computed, it is set to the maximal
support of nodes in the opset, so equation 3 holds obviously.

When estMaxsup is updated after the initialization and re-computation,
there are four cases to discuss.

1. If a child node of nX is going to be added in the basic OPFI-tree but pruned
by the optimistic pruning, and it has support bigger than estMaxsup, then
estMaxsup is updated as the support. Obviously, equation 3 holds.



2. When sup(nX) increases, nodes in opset(nX) may increase their support or
remain the same. So increasing estMaxsup will still make the equation 3
hold.

3. When sup(nX) decreases, nodes in opset(nX) may decrease their support
or remain the same, and whether the node with the maximal support in
optset(nX) decreases its support can’t be determined. So estMaxsup needs
to remain the same, and equation 3 holds.

4. If a node’s support decreases to be smaller than slackMinsup, then the
node is pruned and added into opset of its parent. The parent’s estMaxsup
is updated as the maximal support of nodes in opset, so equation 3 also
holds.

Then we can prove that no frequent node is lost by the optimistic pruning
strategy.

Theorem 1 The optimistic pruning strategy does not lose any frequent nodes
in the basic OPFI-tree.

Proof. The proof can be divided into two steps:
Step 1. There is no frequent nodes pruned in the optimistic pruning pro-

cess. The optimistic pruning strategy only prunes infrequent nodes with support
smaller than slackMinsup, so there is no frequent node to be pruned.

Step 2. The algorithm can monitor the status changes of the infrequent nodes
pruned by the optimistic pruning strategy. According to equation 3, when some
nodes in opset change to be frequent, we have estMaxsup ≥ minsup, so the
re-computation operation will occur.

5 Experimental Results

We compare the performance of OPFI-stream against Moment [12], which re-
turns accurate recent closed frequent itemsets in data streams. The experiments
are done on a 2.8G Hz processor with 1G MB memory, running Windows 2003.
In the experiments, the size of the sliding windows is fixed to 50,000, and the
user-specified minimum support threshold is set from 0.1% to 1%. Under these
settings, we will compare the performance of running time and maximal memory
usage.

The first test dataset is a synthetic dataset, called T10I4D100K. It is gen-
erated using the synthetic data generator implemented by Agrawal et al. in [2].
T10I4D100K means that the average size of transaction is 10, the average size
of maximal potentially frequent itemsets is 4, the total number of transactions
in the dataset is 100,000. For simplicity in the following figures, we will use x to
denote the value of slackMinsup when slackMinsup = x ∗minsup.

In the first experiment, we will vary slackMinsup from 0 to 0.9 ∗ minsup
when minsup = 0.6%, to compare the average update time and mining time, the
number of infrequent nodes in the tree. In order to see whether the optimistic
pruning strategy is effective, we will compare the call times of two types of



BuildTree. The BuildTree described in [13] is used to construct the subtree under
a frequent node. The first type is invoked when an infrequent node changes
to frequent, and the second type is invoked in the re-computation step when
estMaxup increases to minsup.

(a) Average Update and Mining Time / In-
frequent Nodes

(b) Number of BuildTree Calls

Fig. 2. Performance of OPFI-stream on T10I4D100K when slackMinsup Changes

Figure 2 shows the average update, mining time and number of infrequent
nodes for OPFI-stream over 1000 sliding windows under different slackMinsup.
As slackMinsup increases in figure 2(a), the number of infrequent nodes in
the OPFI-tree decreases, especially when slackMinsup changes from 0 to 0.1 ∗
minsup, the number drops dramatically. It means that most itemsets have low
frequencies. This also implies that the optimistic pruning strategy is very efficient
to prune infrequent nodes. The average update and mining time decrease when
slackMinsup increases. The trend of mining time is similar to that of infrequent
nodes, because mining in OPFI-stream is just to traverse the tree and the mining
time depends on the total number of nodes in the tree. When slackMinsup = 0,
the update time is much more than the rest, because the OPFI-tree is much big-
ger when slackMinsup = 0 and becomes the dominant factor. As slackMinsup
increases more than 0.6 ∗ minsup, the update time fluctuates. This is because
that most infrequent nodes are pruned by the optimistic pruning strategy, but
some of the nodes have support very close to minsup and will be added soon.
Figure 2(b) shows the number of calls to BuildTree when slackMinsup changes.
The first type of calls to BuildTree is not affected by the slackMinsup, and the
calls caused by the optimistic pruning is few when slackMinsup is small, but
increases when slackMinsup increases more than 0.8∗minsup. This is the same
trend like that of the average mining time as shown in figure 2(a). We can see
that the number of BuildTree calls caused by the optimistic pruning is a little
bigger when slackMinsup = 0.9∗minsup, this is because some infrequent nodes
with support close to minsup are also pruned but may change to frequent after
some slides. Although the BuildTree needs to scan all transactions in the sliding



window, it can be seen from the experiments that the number of calls to it is
very small, so the performance will be affected only slightly due to the BuildTree
calls.

Then we will compare the update time and maximal memory usage for OPFI-
stream and Moment. Mining in the Moment algorithm is to traverse an extra
hash table and return closed frequent itemsets, so there is additional work to
get all frequent itemsets from the closed frequent itemsets. So the mining time
comparison is omitted here. OPFI-stream has two main data structures: OPFI-
tree and bit-sequences, while the latter is determined by the number of items
and the size of the sliding window. Moment also has two main data structures:
CET and FP-tree, while the latter is used to store all transactions in the sliding
window. In most cases, the memory usage of the bit-sequences in OPFI-stream
is much smaller than that of the FP-tree in Moment. But they are just assistant
data structures, the details are omitted here. So we will compare the number of
all nodes in OPFI-tree and CET instead of maximal memory usage. From the
first experiment, we will make a tradeoff between running time and space usage,
so slackMinsup is set to be 0.6 ∗minsup.

(a) Average Update Time (b) Number of Nodes in OPFI-tree / CET

Fig. 3. Performance Comparison on T10I4D100K when minsup Changes

Figure 3 shows the performance comparison of the OPFI-stream and Moment
algorithms over 1000 sliding windows under different minsup. We can see that
both the average update time and the number of all node in OPFI-tree are stable
when minsup increases and much less than that of the Moment algorithm. When
minsup is small, the number of nodes in OPFI-tree can be less than 2% of the
number of nodes in CET. This is because that most infrequent nodes are pruned
by the optimistic pruning strategy, which results in a very small OPFI-tree.
Furthermore, the bit-sequence representation of the items in the sliding window
is also very efficient in operations such as deleting old transaction, adding new
transaction and counting frequencies for itemsets. So the average update time
of OPFI-stream is much smaller compared to that of the Moment algorithm.



The second test dataset is a real dataset, called BMS-Webview-1, which con-
tains several months of click stream data from an e-commerce web site. This
dataset was used in KDDCUP 2000 [14]. In BMS-Webview-1, there are 59,602
transactions, 497 distinct items, and the maximal transaction size, the average
transaction size are 267 and 2.5 respectively.

(a) Average Update Time (b) Number of Nodes in OPFI-tree / CET

Fig. 4. Performance Comparison on BMS-Webview-1 when minsup Changes

Figure 4(a) and 4(b) show the results on BMS-Webview-1. We can see that
the trends in these two figures are nearly the same as that in figure 3(a) and
3(b). Both the time and space usage in the two algorithms for BSM-Webview-1
are smaller than that of T10I4D100K. This is because the average transaction
size is smaller than that of the previous synthetic dataset.

From the experiments on both synthetic and real dataset, we can see that
both the time and space performances of OPFI-stream outperform Moment.
OPFI-stream has a good and stable performance even when minsup is small.
Moment’s performance is close to OPFI-stream when minsup is relative large,
but degrades dramatically when minsup decreases smaller than 0.5%.

6 Conclusions

In this paper, an OPFI-stream algorithm is proposed to mine all accurate recent
frequent itemsets in data streams. It uses a highly compact OPFI-tree to main-
tain all frequent itemsets and their accurate frequencies. Experimental studies
show that the optimistic pruning strategy has pruned most infrequent nodes
during the construction and updates, and the OPFI-tree is much smaller than
the CET in the Moment algorithm. Besides the smaller memory usage, the ex-
periments also show that it runs significant faster than the Moment algorithm.
In the future, we will focus on adding batch updates in our proposed algorithm
to improve the performance further.



References

1. Jiang, N., Gruenwald, L.: Research issues in data stream association rule mining.
SIGMOD Record 35(1) (2006) 14–19

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB
’94: Proceedings of the 20th international conference on Very Large Data Bases,
MorganKaufmann (1994) 487–499

3. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. In: SIGMOD ’98:
Proceedings of the 1998 ACM SIGMOD international conference on Management
of data, New York, NY, USA, ACM (1998) 94–105

4. Wang, K., Zhou, S., Liew, S.C.: Building hierarchical classifiers using class prox-
imity. In: VLDB ’99: Proceedings of the 25th International Conference on Very
Large Data Bases, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc.
(1999) 363–374

5. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD international conference
on Management of data, New York, NY, USA, ACM (2000) 1–12

6. Zaki, M.J.: Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering 12(3) (2000) 372–390

7. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
VLDB ’02: Proceedings of the 28th international conference on Very Large Data
Bases, VLDB Endowment (2002) 346–357

8. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining frequent patterns in data
streams at multiple time granularities. In: In Proceedings of the NSF Workshop
on Next Generation Data Mining. (2002)

9. Gaber, M.M., Krishnaswamy, S., Zaslavsky, A.: On-board Mining of Data Streams
in Sensor Networks. In: Advanced Methods for Knowledge Discovery from Complex
Data. Springer Berlin Heidelberg (2006) 307–335

10. Chang, J.H., Lee, W.S.: estwin: adaptively monitoring the recent change of fre-
quent itemsets over online data streams. In: CIKM ’03: Proceedings of the twelfth
international conference on Information and knowledge management, New York,
NY, USA, ACM (2003) 536–539

11. Cheng, J., Ke, Y., Ng, W.: Maintaining frequent itemsets over high-speed data
streams. In: PAKDD’06: Advances in Knowledge Discovery and Data Mining, 10th
Pacific-Asia Conference. (2006) 462–467

12. Chi, Y., Wang, H., Yu, P.S., Muntz, R.R.: Moment: Maintaining closed frequent
itemsets over a stream sliding window. In: ICDM ’04: Proceedings of the 4th IEEE
International Conference on Data Mining, Washington, DC, USA, IEEE Computer
Society (2004) 59–66

13. Li, K., yan Wang, Y., Ellahi, M., an Wang, H.: Mining recent frequent itemsets
in data streams. In: The 5th International Conference on Fuzzy Systems and
Knowledge Discovery. (2008)

14. Zheng, Z., Kohavi, R., Mason, L.: Real world performance of association rule algo-
rithms. In Provost, F., Srikant, R., eds.: Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. (2001) 401–
406


