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Abstract. Data acquisition in battery-powered sensor networks must be energy-
efficient. Given this objective, we study the following problem: At which network
node(s) should a join be computed? One alternative is centralized, i.e., at one
location, vs. distributed. The problem with centralized approaches is that they
must consolidate the data from the entire network at the particular site. This is
expensive. Thus, we investigate when exactly the distributed alternative ismore
efficient. To do so, we observe that processing the join in a distributed waycon-
sists of two high-level tasks, which determine the energy consumption: (1) De-
rive the information to find the optimal join location(s). (2) Compute the result,
given these locations. Understanding how each of these tasks should ideally be
performed is not trivial: Analytic models result in non-differentiable formulae.
Further, the number of alternative distributions is extremely high. We address
these issues by applying statistical methods. Our contribution is to show that the
second task should not be distributed, besides exceptional cases. Regarding the
first task, we show that information beyond knowing which tuples join doesnot
help to optimize the processing.

1 Introduction

Wireless sensor networks proliferate in many application domains, from environmental
monitoring to industrial maintenance. They typically consist of battery-powered nodes
with constrained computation and communication capabilities. To increase the lifetime
of the network, energy-efficient mechanisms for data acquisition are mandatory.

Our focus is on processing the join efficiently. The join is the classical database
operator to express relationships and to analyze sensor data.

EXAMPLE 1.1: A meteorologist is interested in analyzing the following unusual ob-
servation: At nearby locations there is a significant difference in atmospheric pressure.
A query that acquires the necessary sensor readings is expressed in SQL using a join:

SELECT A.*, B.*
FROM Sensors A, Sensors B
WHERE distance(A.x, A.y, B.x, B.y) < 100m
AND A.pressure - B.pressure > 0.1hPa
ONCE

Here, RelationSensors serves as a database abstraction of the sensor network.
Every node is represented by a tuple with one attribute per sensor of that node (e.g.,



temperature, light).ONCE specifies that the query refers to the current state of the net-
work ("snapshot query"), cf. Section 3. 2

Our goal is to process join queries using a minimal amount of energy. Typically,
sensing and communication dominate the power consumption of a node by orders of
magnitude [1–3]. As the sensing costs are orthogonal to the join algorithm, we must
minimize the communication to process the join energy-efficiently [1].

More specifically, we investigate the problemat which nodesof the network the
join should be processed. In particular, join queries in sensor networks may join tuples
located on arbitrary nodes and may involve arbitrary join conditionsin the general case.

One alternative for processing the join is centralized, i.e., at a single location. The
’basic’ variant of a centralized join performs all the computations at the base station.
Centralized approaches are however expensive: They require to transfer each tuple to
the processing site which may be far from the nodes involved in the join. We provide a
more thorough discussion in Section 4.

In contrast, operators like projection and selection can beefficiently executed by
distributing the computation [4, 5]. The idea is to process the data close to the sources
to reduce its volume before transmission. This gives way to the following question:
Can distributing the join yield a more efficient processing in the general case? So far,
distributed join methods are advantageous in specific scenarios only (cf. Section 2).

A distributed join processing must meet two requirements: (a) Any pair of tuples
that join must be in the result. (b) The processing sites haveto be chosen so that they
are close to the data sources. Thus, distributing the join includes two high-level tasks:
(1) Set up: Derive the information required to process the join efficiently and correctly
in a distributed way. (2) Result computation: Compute the result, given the setup.

The setup is as important as the actual computation of the result: Identifying optimal
join locations requires knowledge of the current state of the network. But acquiring this
knowledge can be costly. For instance, the optimal locationin the centralized case can
be derived from the join selectivity and the placement of thenodes (cf. Section 4).

Our goal is to understand which parts of join processing can/should be distributed
for the sake of efficiency. In particular, we seek to derive optimal solutions for both
of the high-level tasks. This analysis is difficult, mainly for two reasons: (1) Analytic
models of join strategies cannot be reduced to formulae thatare differentiable. For our
analysis we borrow from solutions of the weighted Fermat problem and the computation
of Steiner trees, and we use statistical methods to provide strict confidence bounds for
our results. (2) The number of possible distributed join locations is huge, resulting in a
combinatorial problem. A key idea of our work is to develop anestimator that provides
bounds on the efficiency of distributed joins. Our contributions are as follows:

Identifying the knowledge necessary to devise optimal joinlocations.We iden-
tify which knowledge the set up step must gather. Our result is that it is sufficient to
know which of the tuples actually join. Further informationlike the join partners of a
tuple or their locations does not help to optimize the processing. This is an important
insight regarding the design of concrete join methods: We reduce the problem to finding
ways of acquiring this knowledge efficiently.
Identifying optimal locations for join computation. We show that, given the knowl-
edge which tuples join, the optimal location for the result computation is the base station



(except for one special case, cf. Section 5.3). This finding restricts the set of distributed
join methods. Once we have identified the tuples contributing to the result it is optimal
to ship them to the base station and join them there. In other words, any join implemen-
tation that performs a pre-filtering step should not distribute the actual join processing.

What do these results mean? We prove that the optimal distributed join algorithm
for the general case consists of a (possibly distributed) filtering phase, followed by a
centralized result computation. Any energy-savings potential lies in devising an efficient
filtering scheme. Alternative join approaches can be optimal in specific scenarios only.

Paper outline. Section 2 reviews join processing in sensor networks. Section 3
presents preliminaries of our work. Section 4 discusses centralized approaches. Our
analysis of distributed join processing is presented in Section 5. Section 6 concludes.

2 Related Work

Energy consumption of operations like projection, selection, [6] and aggregation (e.g.,
[7, 8]) are well studied. Efficient implementations exist indata-management systems
for sensor networks such as TinyDB [4] or Cougar [5]. However, these systems do not
support join operations well: TinyDB allows to join data tuples that are located on the
same node only. Although [2] argues that an in-network join can be beneficial, Cougar
does not feature this. REED [1] allows for a join of a static external relation and sensor
data. REED distributes the static relation among groups of adjacent nodes so that each
node can access these tuples at little cost.

In the following, centralized and distributed approaches are presented that process
joins over several sensor relations inside the network. As the applicability of all of them
is limited, they substantiate our central question: Which parts of the join processing can
be distributed in order to increase efficiency?

Centralized join methods.A number of approaches compute the join at a single
location inside the network. [9] studies long-running joinqueries in sensor networks.
The authors reduce the problem to a variant of the task-assignment problem and adap-
tively relocate the operator. [10] computes the join on the path between the input data
and the query issuer. [11] extends the approach for range queries. Coman et al. [12]
present the details of computing the join at a central location inside the network.

Centralized in-network approaches are more efficient than joining the tuples at the
base station (cf. Section 4) if (1) the join selectivity is very high, and (2) the tuples
transmitted to the central site are located close to each other, compared to their distance
to the base station. Thus, centralized approaches are not efficient when it comes to
general join queries, i.e., if the tuples are distributed arbitrarily in the network.

Distributed join methods. Some of the approaches that distribute (parts of) the
processing will serve as illustrations throughout this paper. Yu et al. [13] propose an ap-
proach which uses a pre-computation. The idea is to construct one synopsis per relation
which is used to identify the tuples that join. In addition, the optimal join location is
computed for subsets of these tuples, i.e., the result is computed at different locations.
However, the applicability of this approach suffers from the same restrictions as the
centralized ones. Thus, this approach does not succeed in extending the applicability
by means of distribution. The approach by Yiu et al. [14] joins tuples from neighboring



nodes, i.e., the join condition isdistance(A,B) ≤ d whered is less than the com-
munication range. The idea is that each node of Relation A broadcasts its tuple. Each
node of Relation B performs the join and sends the result to the base station. Again,
this distributed approach is limited in its applicability to a specific join condition which
guarantees that the tuples involved are close to each other.Finally, an approach that is
designed for the application of tracking rare events is presented by Yang et al. [15]. The
approach is based on a pre-computation in which one of the relations is distributed to
serve as a filter. While this approach incorporates a distributed filtering, it cannot serve
as a general join method. This is because it requires one of the relations to be small (a
few tuples). Finally, Yang et al. compute the final result at the base station. Thus, the
question remains which parts of the processing can be distributed to increase efficiency.

Analysis of join processing.Coman et al. [16] implement some concrete join strate-
gies and compare them using simulations. Their goal is to findout under which circum-
stances a particular method is superior. Their analysis encompasses centralized methods
as well as a semi-join. In contrast to our work, the paper doesnot address distributed
join processing.

3 Preliminaries

This section discusses the design space for join methods andfeatures a problem state-
ment. In addition, we specify our network model and the communication costs.

3.1 Join Queries over Sensor Networks

To facilitate queries over sensor networks the network is seen as a(sensor) relation.
Networks consisting of homogeneous nodes are represented as a single table with one
attribute per sensor (e.g., temperature, light) and one tuple per node. If the network is
heterogeneous, groups of homogeneous nodes form differentrelations. We say thata
node belongs to a sensor relationR if it contributes a tuplet to R.

Our analysis refers to join queries with the following general structure:

SELECT A.attrs, B.attrs
FROM Relation_1 A, Relation_2 B
WHERE preds(A) AND preds(B)
AND join-exprs(A.join-attrs, B.join-attrs)
ONCE

The query covers two sensor relations and a set of join conditions that are arbitrary
expressions over the join attributes. In the special case ofa self-join, theFROM clause
contains the same relation twice. Optional predicates in theWHERE-clauses can narrow
down the scope of the query.

The semantics is the standard SQL semantics extended for temporal aspects of sen-
sor data. In particular, we adopt the non-SQL clauseONCE from TinyDB [17]: It spec-
ifies that the result is computed based on the current values.In particular,SELECT *
FROM Rel_1 ONCE returns a single tuple from each node that belongs toRel_1.



3.2 Design Space for Join Processing

Our problem is to find an optimaljoin strategy. Intuitively, a strategy states how the join
is computed.

DEFINITION 3.1 (Strategy)A strategy is (a) a set of locations where tuples are joined
and (b) the routes along which tuples are sent.

Before discussing alternatives for join strategies, we introduce two basic require-
ments that have to hold for any efficient strategy:

REQUIREMENT 1 (Correctness of the Result)The join result has to be correct.

Correctness is a particular concern in distributed settings. We have to ensure that
every pair of tuples that join meets at (at least) one location.

REQUIREMENT 2 (Minimal routes)An optimal strategy has to minimize the routes
along which the tuples are sent.

This requirement helps to restrict the set of candidates foroptimal strategies. A strat-
egy that sends tuples on an unnecessarily long route has a superior strategy that sends on
a shorter route. – Having described the basic requirements,we now discuss the design
space of join strategies according to three dimensions: (1)number of processing sites,
(2) locations of processingand the (3)granularity of knowledgerequired to identify the
strategy. Figure 1 serves as an illustration. We discuss each of the combinations in this
paper including those that are not named explicitly.

Dimension 1: Number of Processing Sites.Along thenumber of sitesdimension,
we make the following distinction:

DEFINITION 3.2 (Centralized Strategy)A centralized strategy is a strategy that per-
forms the join at a single node.

DEFINITION 3.3 (Distributed Strategy)A distributed strategy may consist of multiple
(≥ 1) join locations.

Distributed strategies are defined as a generalization of centralized strategies, i.e.,
each centralized strategy is a distributed one.

According to our definition, centralized strategies perform the join at one location.
In practice, resource limitations might require several neighboring nodes to compute
a join. However, we want to provide bounds on the communication costs of different
strategies. Using a single node will serve as a lower bound for the communication costs
of centralized strategies, as we will discuss in Section 4.

Dimension 2: Processing Locations.We distinguish between the processing loca-
tionsroot andin-network.

DEFINITION 3.4 (Root Strategy)A root strategy transfers all tuples on the shortest path
to the base station where the result is computed.

Root strategies are centralized strategies. We refer to a centralized strategy where
the join location is different from the root ascentralized in-network strategy.

Dimension 3: Granularity of Knowledge. Identifying the optimal join strategy
requires knowledge of the current state of the network. For instance, it has been shown
for centralized strategies that the optimal location depends on the join selectivity and
on the placement of the nodes [16]. We incorporate the acquisition of knowledge in
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our analysis since the associated costs can vary significantly, depending on the level of
detail that is required. In the following, we introduce three such levels.

Intuitively, we can identify an optimal join strategy if we know everything about the
state of the network:

DEFINITION 3.5 (Complete Knowledge)We have complete knowledge of the state of
the network if we know the set of sensor relations.

When knowing the sensor relations we know the location of eachnode as well as
its current sensor readings. Further relevant informationcan be inferred, e.g., the join
partners of a tuple. Thus, complete knowledge would be idealto identify optimal join
strategies. However, acquiring complete knowledge is prohibitively expensive in terms
of communication, and it is unnecessary: If we have completeknowledge of the sensor
readings, we also know the join result. Thus, we search for abstractions of (parts of) the
complete knowledge which suffice to identify an optimal strategy.

DEFINITION 3.6 (Knowledge at the granularity of nodes)If the knowledge describes
the state of a single node, it is at the granularity of nodes.

EXAMPLE 3.1 Knowing the join partners of a tuple or their locations, or knowing which
tuples do not join are examples of knowledge at the granularity of nodes. 2

DEFINITION 3.7 (Knowledge at the granularity of relations)If the knowledge abstracts
from single nodes and describes a relation as a whole, it is atthe granularity of rela-
tions.

EXAMPLE 3.2 The join selectivity or the number of nodes of a relation are knowledge
at the granularity of relations. 2

Our analysis will focus on these levels of abstraction. Specifically, we will show
in Section 5 that knowledge at the granularity of nodes is a prerequisite to identify an
optimal distributed strategy.

3.3 Problem Statement

In order to quantify efficiency we introduce the relative measuregain. It compares the
costs of a strategy (coststrat) to the costs of a reference strategy (costref ). We use a
relative measure in order to abstract from communication hardware.
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nA, nB Number of tuples of RelationA, B involved in the join
lACR, lBCR Distance from center of mass,AC , BC to the rootR

ω Angle�ACRBC

d̄A, d̄B Distribution (mean distance) of nodes with respect to their center of mass
ca, cb Relative costs of sendingtA, tB for one hop with respect totAB

σ Join selectivity
Table 1.Overview of the parameterization

tA, tB , tAB Tuples of RelationA, B and a result
AC , BC Center of mass of Relation A, B
Ai, Bi Node of Relation A, B
R Root node

Table 2.Further notation

DEFINITION 3.8 (Gain)

gainref = 1 −
coststrat

costref

(1)

Modeling the costs of the strategies is different for the centralized and the distributed
case and will be discussed in the corresponding sections. Inboth cases, the root strategy
will serve as a reference point. In order to simplify notation, gain refers to gainroot.
According to the preceding definitions the root strategy is an instance of a centralized
as well as a decentralized strategy. Thus, the following holds:

COROLLARY 3.1 For optimal centralized and decentralized strategies,coststrat ≤
costroot. Therefore, gainroot ∈ [0, 1]. 2

DEFINITION 3.9 (Optimal Strategy Problem)Find the strategy that maximizes gainroot.

3.4 Network Model

In the following, we present and justify our network model. We refer to the two relations
to be joined asA andB. The relations contain those nodes that result from applying



the selection predicates (WHERE-clause) to a sensor relation. Figure 2 represents the
nodes of RelationA as filled squares. They are denoted asAi ∈ {A1, ...,Am}. Nodes
of RelationB are depicted as filled circles. Non-filled shapes stand for nodes whose
tuples are excluded by theWHERE-clause of the query. The root nodeR is depicted as
a star. We refer to a tuple of RelationA or B astA or tB , respectively.tAB represents
a tuple that results from joiningtA with tB.

In our analysis we distinguish between different states of the network according to
the following parameterization: RelationA can be described by its center of massAc,
themeandistanced̄A = 1

nA
·
∑

i d(Ac,Ai) of each node to the center and the number
of nodesnA. RelationB can be described in the same way. The relative location of
the nodes ofA andB to each other and to the root node are described by the angle
ω = �AcRBc and the distanceslACR, lBCR.

Given these parameters, we can abstract from single nodes bydescribing the relation
as (Ac, d̄A, nA). On the other hand, our numerical methods require concretesets of
nodes based on the parameters (Ac, d̄A, nA). We therefore assume:

ASSUMPTION3.1The nodes of a relation are uniformly distributed within (Ac, d̄A).

Finally, we will refer to the join selectivity asσ, which is defined as the ratio of the
cardinality of the join result to the input, i.e.,σ = card(A1B)

card(A)·card(B) . Table 1 summarizes
these parameters. Table 2 contains some further notation.

Appropriateness of our network model.Note that our set of parameters describes
each relation as a whole. There is an infinite number of concrete placements of nodes,
which corresponds to each parameter setting.

PROPOSITION3.1 The results obtained for a parameter setting according to Table 1
apply to every instance of node placements that obeys the setting.

This is true as we found that, given a specific parameter setting, the gain of sets
of nodes{R,A1, ...,AnA

,B1, ...,BnB
} that obey this setting has a very small variance

(V ar(gain) < 1%; cf. Section 4). Thus, every instantiation of our network model
results in approximately the same gain. This makes our compact model very well suited
for the analysis.

3.5 Cost Model

Our optimization goal is to minimize the energy consumed forcommunication. To this
end, we need to model the communication costs.

Costs of sending a packet via multiple hops.The costs of sending a packet are
computed by multiplying the one-hop costs with the number ofhops. We model the
one-hop costs as a parameter which is discussed at the end of this section (ca, cb). The
number of hops is approximated by the Euclidean distanced(·, ·) between the sending
and receiving node. Thus, the costs of sending a packet containing TupletA from node
A1 toA2 are modeled asd(A1,A2) · ca.

Since we are interested in the relative performance of different strategies (gain), a
model that provides costs proportional to the communication costs suffices. The Eu-
clidean distance is proportional to the number of hops giventhe following assumption:

ASSUMPTION3.2The sensor network is sufficiently dense such that the Euclidean dis-
tance between two nodes is (approximately) proportional tothe number of hops.



Nodes at optimal locations.In our analysis we will come up with strategies that
perform computations at the mathematically optimal locations. Thus, our model as-
sumes that there exists a node at the derived location. In practice, the node closest to
this location has to be chosen. If the network is sufficientlydense, this node should be
within communication distance of the optimal location. As aresult, the number of hops
will be the same or will differ by at most one hop (more or less). Therefore, we expect
the influence on the results to be small.

ASSUMPTION3.3The sensor network is sufficiently dense such that there exists a node
within communication distance of each point.

Communication costs per hop:In the remainder of this section we discuss the
communication costs per hop (ca, cb). In addition to defining them, we discuss the range
of these parameters for realistic communication hardware.This is important to derive
meaningful conclusions.

The costs of sending one packet over one hop can be decomposedto fixed costs
per packet andvariable costsdepending on the size of the payload:cost(size(t)) =
costfix + costvar(size(t)). We consider the costs of sendingtA, tB as well as of send-
ing a result tupletAB . In order to reduce the number of parameters, we normalize the
costs with respect to the costs of sending one result tuple:ca = cost(size(tA))

cost(size(tAB)) .
Variable costsdepend on the size of the tuple. To interpret our results we assume:

ASSUMPTION3.4The maximum size of a tuple is 15 attributes of two bytes.

Note that 15 attributes is a lot given that current sensor nodes like Mica motes are
equipped with up to 8 sensors. Thus,tAB can be up to 30 bytes larger thantA if tB is at
maximum size, and no join attributes are projected out. In order to understand the lower
bound on the size oftAB , consider the number of join attributes. It is always possible
to construct examples consisting of an arbitrary number of join attributes. However, in
order to arrive at meaningful conclusions we focus on realistic scenarios:

ASSUMPTION3.5The number of join attributes in sensor networks is at most 8.

Thus,tAB can be up to 16 bytes smaller thantA if all 8 join attributes fromtA and
tB are projected out.

Fixed costsfor sending one packet mainly depend on the MAC and PHY layer
overhead. It results from the wakeup of the transmitter, carrier sensing, RTS and CTS,
preamble, etc. In order to quantify these costs we looked at asample of prominent MAC
protocols: S-MAC [18], B-MAC [19], and SCP-MAC [20]. The minimum PHY/MAC
layer overhead we observed is equivalent to the transmission of 127 bytes. This leads
to the following assumption:

ASSUMPTION3.6The difference in the energy consumption between sending anempty
frame and a frame with 16 bytes payload is less than 15%. The difference for sending
30 bytes is less than 30%.

This percentage is further reduced by overhearing, contention, errors and collisions.
Most of the measurements we are aware of refer to the 802.11 protocol (e.g. [21]).
There, increasing the payload by 30 bytes results in a difference of less than 10%.
Consequently, the relative costsca (cb) are in the range from 0.75 (for a maximum of
30 bytes less thantAB) up to 1.15 for 16 bytes more. This range should include any
realistic communication hardware.



4 Centralized Join Processing

While our concern is distributed join processing, we start our analysis with the central-
ized case. We will state that all centralized join methods (e.g., [10, 12]) are optimal in
specific scenarios only: The nodes involved need to be close to each other compared to
their distance to the base station. In addition, a high selectivity is required.

This insight is interesting in its own right. [16] has arrived at similar findings by
means of simulation. In contrast, given Proposition 3.1, our analytical approach rules
out that there exist placements of nodes that are not in line with this result. Showing that
centralized approaches are efficient in specific scenarios only motivates our examination
of the distributed case. In addition, there are two reasons for presenting the analysis of
the centralized case: The presentation of the distributed case becomes easier. Further,
we will reduce parts of the analysis of the distributed case to the centralized one.

4.1 Cost Model for Centralized Strategies

Our goal is to identify scenarios where using a centralized processing at a single site
J results in energy savings compared to the root strategy, i.e., where there is a gain
(1 − costJ

costroot
> 0). In the following, we provide a model of the costs of centralized

strategies based on our model of communication costs (cf. Section 3).
The cost of computing the join at (any) pointJ is the sum of the costs of sending the

tuples of Relations A and B toJ and sending the result to the root node subsequently:

costJ =

nA∑

i=1

ca · d(Ai, J) +

nB∑

i=1

cb · d(Bi, J) + nA · nB · σ · d(J,R)

d(P1, P2) denotes the Euclidean distance. Recall that a root strategyis a centralized
strategy, i.e.,

costroot =

nA∑

i=1

ca · d(Ai,R) +

nB∑

i=1

cb · d(Bi,R)

What remains to be specified for the model is the join locationJ . The optimal join
location is not a parameter but depends on the placement of the nodes.

PROPOSITION4.1 It is impossible to derive a closed formula for the gain, irrespective
of the parameterization of the network.

PROOF. The join location that minimizescostJ is optimal. This corresponds to the
Fermat problem [16]: For a given set of points{P1, ..., Pn} and their corresponding
weights{w1, ..., wn}, find a pointJ that minimizes

∑
i wi · d(Pi, J). It has been shown

that there is no closed expression for computing the Fermat point [22]. 2

The Fermat problem can only be solved numerically.

4.2 Method

Proposition 4.1 results in two problems: (1) We need a methodto compute the gain
numerically. (2) We must be able to analyze the gain-function in order to identify global
and local optima.



nA, nB Number of tuples ofA, B 200, 300
lACR, lBCR DistanceAC , BC toR 1.0, 1.0

ω AngleACRBC 0.5 (30
◦)

d̄A, d̄B Mean distance toAC , BC 0.5, 0.5
ca, cb Relative costs of sendingtA, tB 1.0, 1.0

σ Selectivity 0.002
Table 3.Standard setting for the analysis

(1) Computation of the gain-function: Our approach for numerically computing the
Fermat pointF of a set of points ({R,A1, ...,Am,B1, ...,Bn}) is based on Weiszfeld’s
algorithm [23]. In order to provide strict confidence bounds, we compute the func-
tion gain(lACR, d̄A, nA, ca, lBCR, d̄B , nB , cb, ω, σ) based on the Monte Carlo method
as follows:

For a setting (lACR, d̄A, nA, ca, lBCR, d̄B , nB , cb, ω, σ) do:
1. Generate a random set of points{R,A1, ...,Am,B1, ...,Bn} that follows the pa-

rameter setting.
2. Compute the Fermat pointF

3. Compute the expected gain based oncostJ with J = F

Aggregate the expected gain with the results from former trials and repeat until the
confidence for the expected gain over all trials is within 0.01% with 98% probability.

According to our analysis, the variance of the gain is extremely small (V ar(gain)<

1%) for different sets of points that obey the same parameter setting. Thus, the expected
gain is a reasonable measure to compare join strategies.
(2) Analyzing the gain function.We want to identify the optima of the gain function.
Analytically finding optima requires differentiating the function. However, this is im-
possible for the gain due to Proposition 4.1. It is also problematic to find optima based
on numerical methods: Such methods inspect a discrete number of values and make
assumptions about the values in between. Thus, making reasonable assumptions is es-
sential for ensuring not to miss local optima. For our analysis, we approach the problem
twofold: In Section 4.3 we observe that the parameters are monotonic within the range
defined in Subsection 3.5. In Section 4.4 we prove that our numerical approach finds
the single global optimum for the gain. This proof is independent of our monotonicity
assumptions. In addition, the proof further substantiatesthe monotonicity assumptions
as they are in line with the global optimum.

4.3 Monotonicity Assumptions

This section deals with deriving the assumptions required for ruling out local optima of
the gain-function. In particular, we derive monotonicity assumptions based on reason-
ing about the underlying problem. Note that the gain function is not differentiable and
therefore it is impossible to prove its monotonicity. Thus,we first discuss the rationale
behind our assumptions, and then complement our discussionby computing the values
of the gain function at discrete points. Since the gain depends on 10 parameters, it is im-
possible to provide an exhaustive numerical scan over the full parameter space. We use
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a systematic approach similar to partial differentiation,i.e. we consider the parameters
in isolation. In particular, we compute the gain numerically by systematically varying
one of the parameters and set the other ones to a standard setting (Table 3). This setting
is chosen such that it yields a medium gain (30%), i.e., it enables us to observe increases
as well as decreases in the gain.

We now establish the monotonicity for the parameters related to the locations of the
nodes, followed by the other parameters.

Influence of the Tuple Locations.We start discussing location-related parameters
(lACR, d̄A, lBCR, d̄B , ω) by providing an explanation based on characteristics of the
Fermat point. Figure 2 serves as an illustration. The Fermatpoint is located "in between"
the relations. If the angle or the mean distance of the nodes to their center becomes
larger, the root node comes closer to also being "in between"the relations. In this case
the root strategy and the centralized in-network strategy are similar, and the relative
gain of the centralized in-network strategy becomes small.

ASSUMPTION4.1The gain increases monotonically as the angleω between the centers
of the relations or the mean distance of the nodes to their centers (d̄A, d̄B) decreases.
It decreases monotonically as the difference betweenlACR andlBCR increases.

Figure 3(a) illustrates the monotonicity for the mean distances of the nodes to their
centers of mass (̄dA, d̄B) and the angleω. The discussion forlACR andlBCR is anal-
ogous. Besides the monotonicity, the Figure 3(a) shows thatthe in-network strategy
yields the maximum energy savings if all nodes except the root node are located close
to each other (̄dA = d̄B = 0 andω = 0). This minimizes the routes along which the
input tuples are sent.

Influence of the Result Size.Again, we start the discussion of the parameters re-
lated to the size of the result (nA, nB , σ, ca, cb) by providing an explanation based on
the Fermat point. It is known that as soon as the weight of one of the points is more than
half of the total weight, it is the Fermat point [24]. Furthermore, if the weight of one of
the points is close to half of the total weight, the Fermat point will be near that point. In
our context, the weight of a node is the number of tuples that it sends multiplied with
the transmission costs. More specifically, the weight of theresult isnA ·nB · σ, and the
weights of the input tuples arenA · ca andnB · cb. If nA · nB · σ ≥ m · ca + n · cb,



the Fermat point will coincide with the root node. In this case, costJ andcostroot are
identical, and the gain will become0. In addition, the larger the size of the result, the
closer will the Fermat point be to the root node.

ASSUMPTION4.2Computing the result inside the network is only beneficial ifthe car-
dinality of the result is smaller than the input. In particular, this requires a high se-
lectivity. Thus, the gain is monotonic in the parameters that determine the size of the
result: ca, cb, nA, nB , σ.

We complement the explanation by computing the gain function. Figure 3(b) shows
the gain depending onnA (the number of nodes of Relation A) and the selectivity
σ. The remaining parameters correspond to the standard setting. The figure confirms
our assumption: As soon as the size of the result outweighs the input tuples, the gain
becomes small, and any in-network strategy does not pay off.Furthermore, the gain is
monotonic in the parameters that determine the size of the result.

4.4 Gain of Centralized Strategies

In the following, we present the single global optimum of thegain function:

PROPOSITION4.2The gain of centralized in-network strategies has its maximum if the
nodes are co-located (lACR = lACR, d̄B = d̄B = 0, ω = 0) and the size of the result is
minimal (0).

PROOF. We have to show that the scenario in Proposition 4.2 is the global optimum.
This can be seen by considering the range of the gain-function [0, 1] (cf. Corollary 3.1).
In the situation that we identified as a candidate for an optimum, costJ = 0, while
costroot takes on some fixed amount. In this case, the gain becomes 1 andthus is indeed
a global optimum. Finally, this is the only global optimum. We conclude this from the
formula (gain =1− costJ

costroot
) sincecostJ > 0 (cf. Equation 4.1) for any other setting.2

Due to its monotonicity (cf. Assumptions 4.1 and 4.2) the gain-function has no local
optima.

Concluding remarks. Centralized approaches can be more efficient than comput-
ing the join at the base station in rather specific scenarios only. To actually choose
among the root strategy and a centralized in-network strategy, one would have to gather
knowledge at the granularity of complete relations, more specifically: (lACR, d̄A, nA,

ca, lBCR, d̄B , nB , cb, ω, σ). This is sufficient as the gain is insensitive to the concrete
set of points as long as they obey the same parameter setting (cf. Proposition 3.1). Our
objective in this paper is to find out if it is possible to design a join method which is effi-
cient for general scenarios. As centralized approaches cannot achieve this, the question
is whether distributing the processing results in more general join methods.

5 Distributed Join Processing

5.1 Logical Steps of Distributed Joins

To structure our analysis of distributed join strategies, we subdivide the processing into
logical steps. As a motivation we briefly discuss two naive ideas for join distribution.



Idea 1: Process each tuple on the way from the sensor node to the root -one could
simply form results tuples whenever two tuples meet that fulfill the join condition.

The problem is that we do not know whether the tuples have further join partners.
In order to ensure correctness (Requirement 1, cf. Section 3) we would have to forward
the input tuples along with the result tuples. As the root strategy only ships the input
tuples, Idea 1 would be less efficient.

Idea 2: A more elaborate idea would be to route the tuples to join locations based
on their join attributes (e.g., by hashing them onto join locations).

However, recall Requirement 2: A distributed approach makes sense only if we
reduce the overall routing lengths compared to a centralized strategy. Sending tuples to
arbitrary locations does not minimize the routes.

The important insight is that weexplicitlyneed to ensure correctness and efficiency.
Given these requirements, we structure distributed join processing as follows:

1. Set up:
(a) Derive the knowledge necessary for guaranteeing correctness and efficiency.
(b) Devise the optimal strategy, i.e., optimal join location(s) and the corresponding

routes.
2. Result computation:

(a) Send the tuples to its join location(s).
(b) Compute the result.
(c) Send the result to the base station.

Note that the purpose of these steps is to illustrate the problems and decisions in-
volved in optimally distributing the processing. In particular, these arelogical steps.
There might be different ways of addressing them:

EXAMPLE 5.1 Consider the knowledge for ensuring that each pair of joining tuples
meets at (at least) one join location (correctness). One wayto obtain this knowledge
is to derive from the query where potentially joining tuplesare located. To illustrate,
Yiu et al. [14] rely on the join condition:distance(A,B) ≤ d whered is less than the
communication range (cf. Section 2). An alternative way of guaranteeing correctness is
by collecting the knowledge required explicitly. For instance, Yiu et al. [14] propose to
introduce a pre-computation that identifies tuples that join. 2

Set up phase:According to Section 4.4 the optimal central join location can be de-
termined based on knowledge at the granularity of complete relations. In contrast, using
knowledge at this granularity to set up an optimal distributed strategy is a problem: If
one does not know which tuples join with each other, correctness (Requirement 1) re-
quires sending one of the relations to every join location inits entirety. This should
be the smaller one. The other relation is fragmented among the processing sites. If we
considered just one of the processing sites, the discussionfrom Section 4 applies. Thus,
a distributed strategy based on relation-level knowledge would suffer from the same
problems as centralized strategies: It would be efficient only for very specific scenarios.
As we are interested in distributed strategies that are moregeneral than the centralized
strategy, our analysis concentrates on knowledge at the granularity of nodes.

It is an open question which knowledge (at the granularity ofnodes) is required to
devise anoptimaldistribution. Do we need to know the join partners of a tuple?Do we



need to know their locations to minimize routes? To address this problem, we start our
analysis by assuming complete knowledge. In particular, weexactly know which tuples
join with each other and where matching tuples are located. We relax this assumption
at the end of our analysis.

5.2 Using Knowledge at Node Granularity

Knowledge at the granularity of nodes means that we can inferwhich tuples have no
join partner. Since an optimal strategy would not send out these tuples, knowledge at
node granularity leads to adistributed filtering. Distributed filtering is applicable to
distributed strategies as well as to the root strategy:

DEFINITION 5.1 (Root Strategy with Filtering)A root strategy with filtering discards
tuples that do not join and then only sends the remaining tuples to the base station.

Even though the root strategy with filtering computes the result at a single node,
it can be seen as distributed join processing as the set up phase is distributed. Note
that filtering cannot be combined with a centralized in-network strategy: According to
Section 4 the latter requires a high selectivity. This is notfulfilled after filtering out
tuples that do not join. We conclude:

COROLLARY 5.1 Knowing which tuples do not join can be exploited for distributed
filtering. This is orthogonal to distributing the result computation, i.e., filtering can
also be combined with the root strategy. It cannot be combined with a centralized in-
network strategy. 2

Figure 1 serves as an illustration of Corollary 5.1. Finally, we briefly discuss the
gain when combining the filtering with the root strategy.

PROPOSITION 5.1 Filtering requires knowing which tuples do not join. Given this
knowledge, filtering leads to a gain depending on the fraction of tuples that join.

PROOF. In the result-computation step the root strategy with filtering sends only the
contributing tuples, i.e., the tuples that join. Leaving aside the costs of obtaining the
knowledge, the root strategy with filtering can save up to 100% if none of the tuples
join. At the other extreme, if every tuple contributes to theresult, the root strategy with
filtering is as costly as the root strategy (0% gain). 2

The proposition indicates that efficiently collecting thisknowledge is a promising
direction for join processing. Note that the filtering exploits only a fraction of the com-
plete knowledge that we are currently assuming.

5.3 Devising an Optimal Distributed Strategy

Our interest is in analyzing whether we can achieve a gain by optimally distributing
the result computation, i.e., Steps 2 a, b, c. In the following, we focus on anoptimal
distributed strategy. It upper bounds the gain of distributed strategies. In particular, an
optimal strategy avoids to send tuples that do not join. Therefore, the subsequent dis-
cussion is restricted to joining tuples.

The major difficulty in analyzing how to optimally distribute the result computation
is that optimal locations and optimal routes mutually depend on each other. We start
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the discussion with a concept that identifies subsets of tuples that can be regarded in
isolation:

DEFINITION 5.2 (Group)A group of tuplesG is a subset of the union of Relations A
and B such that if tuplet ∈ G then every tuplet′ that joins witht is in G as well.

EXAMPLE 5.2 For an equi-join a group is a subset of Relations A and B that yields a
cross product. In this case, if we restrict the join to a single group its selectivityσ = 1.
2

The following corollary is a consequence of Definition 5.2:

COROLLARY 5.2The processing locations of different groups are independent of each
other. 2

The reason is that tuples from different groups do not have tobe brought together at
one location. This property lets us restrict our analysis toa single group in order to find
the optimal distribution. We start with a simple example of adistributed processing that
we will use in subsequent discussions:

EXAMPLE 5.3 Figure 4 shows two nodesA1,A2 belonging to Relation A and one node
B of Relation B. Assume that their tuples form a group and all tuples have the same
size. The figure shows a strategy wheretB is first joined with the tuple fromA2. The
result is sent to the root node.tB is also sent to a second location where it is joined with
the tuple fromA1. 2

Our analysis how to distribute the result computation is structured as follows:
1. For a group of tuples: identify the optimal number of processing sites
2. For a group of tuples: analyze where these sites are located

Optimal number of processing sitesThe difficulty in identifying the optimal number
of sites is that our problem cannot be reduced to a solved mathematical one. However,
we can upper bound the gain by identifying the scenario with the highest gain when
distributing the computation of the join result:

DEFINITION 5.3 (nA:1 Scenario)An nA:1 scenario is a group consisting ofnA tuples
of Relation A that pair up with one tuple of Relation B.

PROPOSITION5.2 ThenA:1 scenario is the optimal case for multiple join locations,
compared to all other groups (nA : nB), for a fixed set of nodes from RelationA.



PROOF. If nA, nB ≥ 2 (otherwise we have annA:1 scenario), the optimal central-
ized join location is the root, as the cardinality of the result is larger than the cardinality
of the input (property of the Fermat point [24]). Consider increasingnB by 1. If the
computation is centralized, this means that we have to sendtB to the root. In the dis-
tributed case, we have to sendtB to each of the processing locations. Afterwards,nA

result tuples have to be sent from the processing sites to thebase station. Thus, the cost
increase for the centralized setting is less in relative terms. Therefore, thenA:1 scenario
yields the largest gain for a distributed computation, compared to a centralized one.2

In the nA:1 scenario, the tuples can be joined at many locations and indifferent
orders, resulting in a combinatorial problem. We devise a method for upper bounding
the gain that consists of:

– an algorithm for computing optimal strategies for two or three tuples in Relation A
(nA ∈ {2, 3}), and

– an estimator for lower bounding the costs fornA > 3.
Computing Optimal Strategies.We can compute optimal strategies based on the

following proposition:

PROPOSITION5.3 Any join locationJ in a distributed strategy is a Fermat point. It
minimizes the routes of the nodes from which a tuple is sent toJ and to which a tuple
is sent fromJ .

PROOF. The proof is the same as the proof of the corresponding property of Steiner
trees [25]. The idea is that the routes could be further optimized if the join location was
not the Fermat point. 2

For the casenA = 2, Proposition 5.3 restricts the number of possible strategies to
three:
1. JoinA2 with B at Fermat PointF2 and sendtB on toF1 and join it with the tuple

fromA1 (cf. Figure 4).
2. JoinA1 with B, then joinA2 with B.
3. Use one Fermat point for all nodesA1, A2, B andR.

By computing the join locations in all three cases and comparing the overall costs we
find the optimal strategy. Form = 3 we can follow the same procedure except that there
are 13 possible constellations.

Lower bound estimation.FornA > 3 we lower bound the costs (upper bound the
gain) of processing the join by reducing the problem tonA = 3. We accomplish this
reduction by choosing two distinguished nodes from Relation A and assume that the
rest was located at one third point. We choose the two distinguished nodes by taking
the node closest to the root as the first point and the nodeN that maximizesd(N,R) +
d(N,B) as the second. The intuition is to take the distribution of the nodes into account
in order to arrive at a meaningful estimation of the communication costs. The remaining
nodes of Relation A are assumed to be located at a single pointon the lineRAC . In this
way, we keep the mean distance from the root node unchanged. Assuming the remaining
nodes to be co-located leads to an underestimation of the costs as it reduces the routing
lengths to pair the tuples. Figure 2 serves as an illustration of the third point.

Gain of Several Join Locations.In the following we compute a lower bound of the
costs of computing the join and compare it to the optimal centralized strategy. Again,
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Fig. 5. (a) Gain: optimal number vs. single site; (b) Gain: optimal location vs. root node

the following discussion is based on monotonicity assumptions of the gain. This is
analogous to Section 4.

PROPOSITION5.4 Using multiple join locations per group of pairing tuples results in
energy savings of at most 12% as compared to choosing a singlesite. This is an upper
bound on the savings for the optimal scenario (nA:1) and holds if the tuples of Relation
A are larger than the result tuples.

We found the costsca of sending a tuple of Relation A to be the most influential
parameter. Figure 5(a) shows its influence along with the angle ω between Relation A
and B. Intuitively, if the result tuples are larger than the ones of Relation A (ca < 1),
sending the input tuples directly to the root node is a good choice. Thus, the optimal
centralized as well as the optimal decentralized strategy are alike. Only if the result
tuples are much smaller than the ones of Relation A, multiplejoin locations can reduce
the energy consumption. Our analysis confirms this intuition. If ca < 1 using a single
join location is optimal. In addition, Figure 5(a) already shows the maximum gain:
In analogy to Section 4, the gain computed confirms the monotonicity assumptions.
Therefore, we have identified the globally optimal gain.

Our analysis of the scenario with the maximum gain reveals that the upper bound
for the energy savings of multiple locations per group of joining tuples is small. Thus,
the number of join locations should be one per group.

Location of Optimal Site per Group In order to identify the single optimal join lo-
cation per group, we compare computing the result for a groupat its Fermat point to
computing it at the root.

PROPOSITION5.5 In settings with a filtering the optimal location per group isthe root
node ifnA, nB ≥ 2; the location is the same for every group.

The analysis for one group is the same as the one in Section 4. The only difference is
that the selectivity factor is high (selectivity is low), atleast nA

nA+1 for thenA:1 scenario,
and the number of tuples per group might be small. Thus, the results directly apply.
The most important influence is the size of the result, which is larger than the input
if nA, nB ≥ 2. Figure 5(b) visualizes this influence, depicting the percental gain of
the optimal location. As soon as the group consists of more than one tuple per relation
(nA, nB ≥ 2) the root node is the optimal location. Only ifnA = nB = 1 a distributed



join strategy can save up to 50% energy if two input tuples lead to one result tuple. Note
thatnA = nB = 1 means that none of the two joining tuples has a further join partner.

Conclusion.Our most important insight is that the result computation isoptimally
performed at the root node, if all tuples that do not join are filtered in advance. Joining
tuples at multiple locations does not increase the energy-efficiency. This result applies
for every join method that involves a filtering. A distributed strategy which is more gen-
eral than the centralized strategy but does not involve a filtering is impossible because
devising a distribution requires knowledge at the granularity of single nodes. Finally,
the distributed filtering is a promising direction to process join queries efficiently if only
a small fraction of the tuples join, and the knowledge can be acquired efficiently. This in
turn settles the knowledge at the granularity of nodes that is required: We need to know
which tuples join. Most notably, information beyond that isnot helpful to optimize the
processing further.

6 Conclusions

In sensor networks, simple query operators are optimally executed by reducing the
amount of data close to the sources. This requires a distributed processing. In con-
trast, distributing the computation of joins is an open problem. In this paper, we aimed
at theoretical insights in how to efficiently distribute thejoin. We were interested in
analytically identifying parts of the problem for which we can derive optimal solutions.
Our most important contribution is to show that joining tuples at multiple locations does
not increase energy-efficiency. This result applies for every join method that involves
a filtering. We showed that after the filtering the result is optimally computed at the
base station. As devising an optimal strategy only makes sense based on knowledge at
the granularity of single nodes, the filtering is inherentlycontained in a distributed pro-
cessing. At the same time, the filtering can result in substantial savings if only a small
fraction of tuples joins. Thus, developing efficient methods for finding out which of
the tuples join and subsequently joining them at the base station is the most promising
direction towards an efficient join processing and is in focus of our ongoing work.
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