Unsupervised feature selection applied to SPOT5 satellite images indexing

Marine Campedel, Ivan Kyrgyzov and Henri Maître

TELECOM ParisTech ⋆⋆, CNRS LTCI
TSI, 46 rue Barrault, 75013 Paris, France
marine.campedel@telecom-paristech.fr,
http://www.tsi.enst.fr/~campedel

Abstract. Satellite images are numerous and weakly exploited; it is urgent to develop efficient and fast indexing algorithms to facilitate their access. In order to determine the best features to be extracted, we propose a methodology based on automatic feature selection algorithms, applied unsupervisingly on a strongly redundant features set. In this article we also demonstrate the usefulness of consensus clustering as a feature selection algorithm, allowing selected number of features estimation and exploration facilities. The efficiency of our approach is demonstrated on SPOT5 images.

1 Introduction

Despite the huge amount of works dealing with image indexing, dealing with satellite images is still an open issue. These large and content-rich images are generally manually exploited by human experts in specific application domains. Depending on the application, the objects of interest are not the same: for example meteorologists are interested in clouds while urbanist photointerpreters are concerned with roads, buildings and green spaces. The diversity of remote sensors allows people to work with the images most adapted to their application contexts.

Moreover these images are numerous (around 100 Gigabytes each day for the SPOT satellite alone) and weakly exploited. New satellites, like Pleiades 1 will soon be launched and provide very high resolution images (450 images each day with resolution around 70cm per pixel). The manual exploitation of such images is untractable: (semi-)automatic and efficient processings are urgently required to facilitate the access to their content.

Hence we are interested in high resolution images indexing and particularly in the question: what are the best features to be extracted for such images? Are classical color (spectral), shape and texture features suitable? We propose to

⋆⋆ This work was supported by the Competence Center in the field of Information Extraction and Image Understanding for Earth Observation funded by CNES, DLR and TELECOM ParisTech. http://www.coc.enst.fr
1 http://www.cnes.fr/web/print-3227-pleiades.php
answer the first question by using a methodology based on automatic feature selection algorithms. The idea is simply to reuse features proposed in the literature, concatenate them and study the redundancy of the resulting features vector using adequate feature selection algorithms. The goal is then to identify a subset of these features being able to represent the informative content of the images while reducing the storage cost. Since the objects of interest are different according to the pointed applications, we aim at developing unsupervised approaches to perform the automatic selection, based on purely objective criteria.

Automatic feature selection (FS) algorithms are related to an abundant literature since 15 years [7, 6, 8]. In our previous works [3, 2, 1], we exploited the tool called Spider [4] and compared both supervised and unsupervised feature selection approaches using supervised classification performances. Our application to satellite images demonstrated the usefulness of simple unsupervised filter methods to reduce the redundancy introduced on purpose in the features vectors. These methods are composed by two steps: i) group features using their similarity, ii) identify representative for each features group. This is a classical way to perform data selection, but in our study we apply it to the features. The most simple example (and the most efficient through our experiments) consists in applying k-Means algorithm on the features and then keep the best representative of each cluster (the nearest to the centroid): we call it k-Means-FS. This can easily be extended to Kernel k-Means clustering (Kk-Means-FS). We also derived a similar algorithm called SVC-FS based on Support Vector Clustering (SVC) [12]: in this case the selected features are directly identified by the support vectors and the clusters are then represented by their contours.

In this article we propose to introduce a consensus clustering method that will overcome the three main problems we still have:

- the estimation of the number of features to be selected;
- the influence of the clustering procedure initialisation;
- the visual analysis of the selected features.

In the next Section 2, we briefly describe our methodology and give the best results obtained when comparing the supervised Fisher selection process and our unsupervised k-Means-FS. We next introduce the consensus clustering algorithm and the associated feature selection algorithm in Section 3. Section 4 demonstrates the efficiency of this method in the context of satellite image texture classification. We finally propose conclusion and further works in Section 5.

2 Unsupervised feature selection

2.1 Methodology

The main idea of our methodology is to exploit objectively evaluated features proposed in the literature through concatenation followed by automatic selection. We make the hypothesis that the different features sets are highly redundant and relevant to our final task. In order to evaluate both supervised and unsupervised algorithms, we evaluate the selected features set with the classification
of a labelled database; mean error rate and standard deviation estimated using cross-validation approach are used as evaluation criteria. Figure 1 illustrates this process. Representation entropy [5] can also be used as a redundancy measure but we do not use it in this article. It is worthy to note that this methodology can be applied to any kind of data (numerical, symbolic, graphs, ...) but in our simulations we only deal with vectorial and numerical values.

Fig. 1. Evaluation of feature selection algorithms using a supervised classification task or heuristics. When only one database is available, selection must be performed on the training set, in the cross-validation loop, whereas when another database is available, feature selection is performed before the cross-validation loop.

2.2 Results and limits
The labelled database is composed by small \(64 \times 64\) sub-images cropped from SPOT 5 HMA panchromatic images with resolution 5m per pixel. These small images were manually selected in order to illustrate unambiguously 6 texture classes illustrated in Figure 2 (city, forest, sea, fields, desert and clouds). Each class is populated by 600 images, which results in a 3600 labelled database. We propose to compare several texture features proposed in the literature (cf Table 1) with few geometrical features resulting from an edge analysis. These attributes are classically normalised with 0 mean and variance 1, individually, over the 3600 data.
As a synthetic presentation of our preceding works [3, 2, 1], we propose a comparative result of two feature selection algorithms. Practically these two methods were shown to be the lonely tractable ones on big image databases and to always produce better recognition results than the other ones. The first one is supervised based on the Fisher Discriminant Analysis as implemented in the Spider tool [4]. The second is unsupervised, called k-Means-FS; it relies on a k-Means feature clustering and then the selection of the features that are the closest to the clusters centroids. Figure 3 illustrates the classification performances (using a Gaussian SVM classifier) as a function of the number of selected features. Without any selection, the mean error rate is $1.7\% \pm 0.6\%$. We observe that:

- the unsupervised algorithm is as good as the supervised one;
- both algorithms behave similarly; we observe a high decreasing slope from 10 to 30-40 selected features and then a stable region after a statistically non significant minimum;
- the classification results are similar with and without selection in the stable region.

These results are encouraging since they demonstrate the ability of simple unsupervised algorithm to capture the informative features in a redundant set. However there are still drawbacks related to k-Means clustering like: the initialisation procedure and the number of features to be selected. We hence propose a new unsupervised algorithm based on a consensus approach.
Table 1. Features computed on the images. [] indicates publication references. We finally produce highly redundant features vectors of dimension 143.

<table>
<thead>
<tr>
<th>Model</th>
<th>Nb</th>
<th>Reference</th>
<th>Extracted attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabor</td>
<td>40</td>
<td>[10]</td>
<td>mean+std on filtered images with 5 scales and 4 orientations filterbank.</td>
</tr>
<tr>
<td>Qmf</td>
<td>8</td>
<td>[11]</td>
<td>Std computed on each subbands for a 2 stages decomposition + mean the last subband.</td>
</tr>
<tr>
<td>MV</td>
<td>2</td>
<td></td>
<td>Mean and std on the whole image.</td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. Mean classification error rate (5 cross validation loops) obtained with a Gaussian kernel SVM after selection by two methods: Fisher-FS (supervised) and k-Means-FS (unsupervised), as a function of the number of selected features. The vertical lines represent one standard deviation apart from the mean error. Without selection the results are 1.7% ± 0.6%. The best result with Fisher-FS is 1.4% ± 0.4% (50 selected features) and with k-Means-FS 1.6% ± 0.5% (60 selected features).
3 Consensual clustering

3.1 State of the art

The idea of combining classifiers is not new, especially in the supervised classification community. The goals are generally to enhance classification performances, identify common classes from different classification algorithms, classify partially labelled or distributed data, ... However when dealing with unlabelled data, this problem is not obvious (no predefined classes, no well-established error measures) and the literature is less prolific and old [20, 23, 21, 25, 26].

There exist many different methods to aggregate information pieces issued from different clustering techniques. One of the most attractive is based on the use of a co-association matrix [20, 23, 21]. This matrix simply illustrates the fact that two data are or are not classified in the same cluster; this approach does not depend on a cluster numbering process nor reflect features spaces (which enable to deal with incomplete data). A typical problem is how to combine clustering results using \(k \)-Means algorithm with random initialisations and random number of clusters? This problem has been considered as the detection of "formes fortes" (strong shapes) proposed in [20], and solved using a mean co-association matrix. Several approaches have been proposed to issue a consensus clustering from the set of given clusterings [23, 21].

In the next section, we propose a well-defined mathematical objective function to solve the consensus problem.

3.2 Objective function

For each clustering result \(p = 1 \ldots P \), the co-association matrix \(A \) is a symmetric binary square matrix of size \(N \times N \), \(N \) being the number of data to be classified. Each element \(A_{puv} \) is 1 if \(u \) and \(v \) are in the same cluster and 0 otherwise. We may also describe this \(p \)th result using the allocation matrix \(B^p \) with \(N \) lines and \(J_p \) columns, with \(J_p \) being the corresponding number of clusters. \(B^p_{uj} \) is 1 when \(u \) belongs to cluster \(C_j \). We have the relation:

\[
A^p = B^p B^{p'}
\]

where ' denotes the matrix transposition operation. For \(P \) different results, the mean co-association matrix \(A \) is given by:

\[
A = \frac{1}{P} \sum_{p=1}^{P} A^p = \frac{1}{P} \sum_{p=1}^{P} B^p B^{p'}
\]

For high \(P \), \(A_{uv} \) estimates the probability of \(u \) and \(v \) to be in the same cluster. Our goal is to obtain the consensual allocation matrix \(B^* \) from \(A \) in order that \(D = B^* B^{*'} \) be the most similar as \(A \) as possible. From the knowledge of \(A \), we
then have to minimize the following error:

\[
E = \sum_{u=1}^{N} \sum_{v=1}^{N} \left(\sum_{r=1}^{N} (B_{uv}^s B_{rv}^s) - A_{uv} \right)^2 = \sum_{u=1}^{N} \sum_{v=1}^{N} (D_{uv} - A_{uv})^2
\]

under the constraint

\[
B^s B^s = \mathbf{I}
\]

(2)

where \(\mathbf{I} \) is a diagonal matrix \(N \times N \) whith diagonal elements corresponding to final cluster sizes. This formulation is similar to the Kernel \(k \)-Means objective function, with \(A \) the Kernel. However we avoid initialisation problems and a priori knowledge about the number of clusters by using our efficient implementation.

3.3 Proposed solution

The complete exploration of all possibilities in untractable; we then propose a heuristic solution based on single-link algorithm. This new algorithm, called LSEC (Least Square Error Combination), proceeds iteratively while reducing the error \(E \) (Eq. 2):

Algorithm 2. Pseudo code of LSEC-algorithm

1: Set \(B^s \) as the identity matrix, \(J \leftarrow N \), \(i \leftarrow 1 \) and \(E^{(i)} \leftarrow N^2 \).
2: Find clusters’ indexes \((j, k) = \arg \max_{u \in C_j, v \in C_k} A_{uv}; j, k = 1, ..., J, j \neq k \).
3: Set \(B^s \leftarrow B^s \).
4: Merge two clusters \(j \) and \(k \) by \(B^s_{uj} \leftarrow (B^s_{uj} + B^s_{uk}) \), with \(u = 1, ..., N \).
5: Remove column \(k \) from matrix \(B^s \).
6: \(E^{(i+1)} \leftarrow \sum_{u=1}^{N} \sum_{v=1}^{N} \left(\sum_{j=1}^{J} (B^s_{uj} B^s_{vj}) - A_{uv} \right)^2 \).
7: if \(E^{(i+1)} \leq E^{(i)} \), then
8: \(i \leftarrow i + 1 \),
9: \(J \leftarrow J - 1 \),
10: go to Step 2;
11: else \(B^s \leftarrow B^* \), \(B^* \) is the optimal partition, stop.

The optimal number of clusters \(J \) is found when the error \(E \) in Eq. (2) is minimum. At the first step we initialise \(B^s \) as the identity matrix supposing that each cluster has only one sample. Error \(E^{(1)} = N^2 \) is initialised to have its
maximal value. The second step is an exploration heuristic choosing the clusters \(C_j \) and \(C_k \) that contain maximally connected examples (\(u \) and \(v \)). Merging is going on until \(E^{(i)} \) reaches a minimum value.

Practically it is possible to avoid the storage of \(A \) and to efficiently initialize \(B^* \) using neighbour graphs. We do not detail these results here, please refer to [17, 19] for more explanations. The main point is that this algorithm can be applied to a high number of data. In our context, we deal with images with size 12000×12000 pixels, that are cut into 64×64 overlapping sub-images; hence we get around 130 000 vectorial signatures for each big image. To test our algorithms we restrict ourselves to small databases but in practice we are dealing with a very huge amount of data.

3.4 Application to feature selection

The basic idea is the same as before: i) group similar features i.e. apply clustering algorithms and find the consensus, ii) select the cluster representatives. Considering the promising results we obtained with \(k \)-Means-FS, we applied \(k \)-Means algorithm with different random initialisations and all possible values for \(k \) (in 2 . . . 143). The cluster representative \(f_j \) is chosen as the more stable feature in the clusters. To be more precise, the analysis of the consensus result reveals different kinds of data:

- stable features: they lie in stable clusters.
- frontier features: they have unneglectable connectedness probability with at least two different stable clusters and can appear as singleton.
- outliers: they correspond to singleton clusters with very weak connectedness to anything.

Let remind that our method is meant to select features among a redundant and a priori relevant set of features. Hence we keep outliers in the final selection and remove frontier clusters. Other choices for the representatives are possible; this simple choice already gives interesting results as presented below. The stability criterion is computed, using the co-association matrix as well as the result of the consensual clustering. For a unique feature \(i \), the stability is computed as:

\[
S_i = \frac{1}{\#C_k - 1} \sum_{i,j \in C_k} A_{ij}
\]

with \(\#C_k \) being the number of elements in cluster \(C_k \). For a cluster \(C_k \), stability is computed as:

\[
S_{\text{intra}}^k = \frac{1}{\#C_k(\#C_k - 1)} \sum_{(i,j) \in C_k} A_{ij}
\]

We also derive a stability degree (called also degree of connectivity) between two clusters as:

\[
S_{\text{inter}}^{k,l} = \frac{1}{\#C_k \#C_l} \sum_{i \in C_k} \sum_{j \in C_l} A_{ij}
\]

\(S_{\text{intra}} \) and \(S_{\text{inter}} \) are very useful to visualize cluster interactions using for example a graph representation (cf Figure 4).
4 Experiments

Unsupervised feature selection does not need any labelled database. Hence we defined a randomly constructed dataset called SpotRdn composed by 25000 64 × 64 randomly cropped sub-images from 32 SPOT5 panchromatic scenes all over the world. We use it to perform the selection and then we will use the labelled database Sat3600 to evaluate our performances. The same features are extracted (cf Table 1) from the two datasets.

Because of the curse of dimensionality we select 100 data (vectorial signatures) among the 25000 available using SVC clustering (cf Section 1) and keeping all support vectors. We choose to apply this data selection method because we do not know anything about data distribution and SVC can adapt to any cluster shape. The number of selected data is arbitrarily chosen close to the number of features. We do not present here a complete evaluation for this data selection.

4.1 Efficiency

Let consider that our final application is the classification task defined on the Sat3600 database. We now compare the classification performance in terms of mean error rate using cross-validation, obtained using or not the selection algorithm. Results are presented in Table 3, using two different classifiers (3-NN and SVM). Note that contrarily to the experiment shown in Figure 3, we do not have to set any parameter. The consensual selection process is able to determine the best number of features (here estimated to 28). Moreover the discriminative power obtained by the consensual set is as good as the original set, and as the previously tested approaches KMeans-FS and Fisher-FS. This observation does not depend on the classifier type.

<table>
<thead>
<tr>
<th></th>
<th>3-NN</th>
<th>SVM (rbf 10)</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>All attributes</td>
<td>3.5±0.8</td>
<td>1.7±0.6</td>
<td>143</td>
</tr>
<tr>
<td>Consensus selection</td>
<td>3.7±0.6</td>
<td>1.5±0.4</td>
<td>28</td>
</tr>
</tbody>
</table>

Table 3. Mean± std classification error (%) obtained on sat3600 database, with and without consensual selection, using two different classifiers: k-NN using 3 neighbors and SVM with Gaussian kernel.

4.2 Feature mining

Not only this consensus-based selection algorithm is providing discriminative features but it also enables us to mine the features set. The consensual clustering identified 76 clusters (including 48 unitary clusters corresponding to frontier features). Hence, as mentionned before, the selected set contains only the more stable feature of each big cluster. In the current experiment we select 28 features.
We observe that most of the clusters are small (3 elements), except one
of them with size 12 (Cluster 21). This big cluster is semantically consistent
since it contains only ”mean” features i.e. mean of the image, as well as ”mean”
corresponding to Gabor or Qmf outputs. This confirms the well-known idea that
”mean” features corresponding to several scales and orientations do not convey
discriminant information.

Using the values of S_{intra} and S_{inter} (cf Figure 4), we can also put in evi-
dence peculiar clusters and produce semantic interpretations. For example Clus-
ter 2 contains homogeneous features (same Haralick feature type concerning gray
level inverse difference) computed with different orientations; similarly Cluster
5 groups features corresponding to correlation measures obtained with differ-
ent orientations; Cluster 27 only contains geometrical attributes related to the
length of the linear segments contained in images. Moreover the high stability
of these clusters let us think that these types of information are particularly
interesting in SPOT5 images and not represented by other feature types.

Similarly we can study relations between clusters. For example we observe
that Cluster 17 is connected to clusters 16, 22 and 24 with a score above 20%. All
these clusters contain features computed as ”variances” (from QMF decomposi-
tion, Gabor filtering or from the original image), corresponding to different scales
but the same orientation. We conclude here that the scale granularity we used
for the Gabor filtering is too fine and a simple dyadic decomposition (as used by
the QMF decomposition) is sufficient; we also note that the 4 orientations are
needed.

Finally, we defined experimental parameters to accelerate the process (num-
ber of k-Means initializations, step for the k value, number of selected data).
When varying these parameters, the estimated number of clusters is quite stable
(± 2) and the cluster nature is similar, but the selected features are different.
In fact we did not try different selection strategies and the choice of the ”more
stable” representatives should be discussed. This is part of our perspectives.

5 Conclusion

In this article we proposed to use a simple unsupervised strategy to explore
SPOT5 images features. We demonstrated the interest of a consensus clustering
approach to solve the problems of i) number of selected features estimation ii)
influence of initial parameters, iii) features mining through stability analysis. We
observed that consensus selection makes semantically consistent clusters emerge,
which helps interpretation. Moreover, when considering a simple landcover clas-
ification task, the selected features set has proven to be as discriminative as the
original (redundant and a priori relevant) features set, as well as a set selected
by Fisher supervised algorithm.

From a machine learning point of view, we are now interested in selection
methodologies combining simultaneously feature and data selection approaches.
In fact our problem is symmetric (towards examples and features) and the main
problem is still how to choose the best representative data (among all available data or inside estimated clusters).

From an applicative perspective, the relevant features are generally not a priori known (for example in the context of new sensors); hence the study of outliers identified using the stability measure will be of great help.

References

